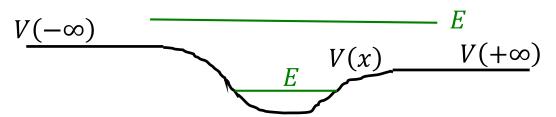
EE201/MSE207 Lecture 5 Bound and "scattering" (unbound) states



When a particle is limited in space ("bound") and when not ("unbound")? In QM the answer is somewhat similar to the classical case:

If
$$\begin{cases} E < V(+\infty) \\ E < V(-\infty) \end{cases}$$
 , then bound (localized, cannot go to infinity)

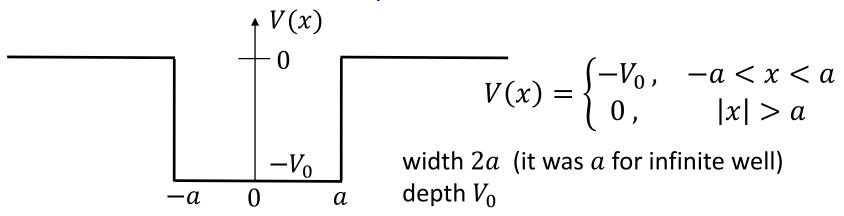
If
$$E > V(\infty)$$
 or $E > V(-\infty)$, then unbound ("scattering"); can be at infinity, free particle there, $\psi \propto \exp(\pm ikx)$.

Why called "scattering"? Scattered particles (2D, 3D).

Important: Bound states \Rightarrow discrete energy spectrum (as for infinite QW and oscillator) Scattering states \Rightarrow continuous energy spectrum (as for free particle)

We will analyze bound and scattering states in an important for applications example: finite square well

Finite square well



Today: Bound states, E < 0 $(E < E(\pm \infty) = 0)$

TISE
$$-\frac{\hbar^2}{2m} \frac{d^2\psi}{dx^2} + V(x)\psi = E\psi$$

$$\begin{array}{c|c}
E & 0 \\
E + V_0 & E < 0 \\
V_0 > 0 \\
E + V_0 > 0
\end{array}$$

Three regions: (1)
$$x < -a$$
, (2) $-a < x < a$, (1) (2) (3) $x > a$

Solving TISE in 3 regions

$$-\frac{\hbar^{2}}{2m}\frac{d^{2}\psi}{dx^{2}} + V(x)\psi = E\psi$$

$$(1) \quad x < -a \implies V = 0 \implies \frac{d^{2}\psi}{dx^{2}} = -\frac{2mE}{\hbar^{2}}\psi$$

$$E + V_{0}$$

$$E = 0$$

$$(2) \quad -V_{0}$$

$$E < 0, V_{0} > 0, E + V_{0} > 0$$

$$\psi(x) = A e^{-kx} + B e^{kx}, \quad k = \frac{\sqrt{-2mE}}{\hbar}$$

$$A = 0 \text{ because } \psi(-\infty) = 0$$

(2)
$$-a < x < a$$
 \Rightarrow $V = -V_0$ \Rightarrow
$$\frac{d^2 \psi}{dx^2} = \frac{2m(V_0 + E)}{\hbar^2} \psi$$

$$\psi(x) = C \sin(lx) + D \cos(lx) \qquad l = \frac{\sqrt{2m(V_0 + E)}}{\hbar}$$

(sin and cos are more convenient for bound states, $e^{\pm ilx}$ more convenient for scattering states)

(3)
$$x > a \implies V = 0 \implies \psi(x) = F e^{-kx} + G e^{kx}$$
 (the same k)
$$G = 0 \text{ because } \psi(+\infty) = 0$$

(1)
$$x < -a$$
 $\psi(x) = B e^{kx}$, $k = \frac{\sqrt{-2mE}}{\hbar}$ (1) $E + V_0$ (2) $-a < x < a$ $\psi(x) = C \sin(lx) + D \cos(lx)$ (3)

(3)
$$x > a$$
 $\psi(x) = F e^{-kx}$ $l = \sqrt{2m(V_0 + E)}/\hbar$

Boundary conditions: 1) $\psi(x)$ is continuous

2) $d\psi/dx$ is also continuous

2') actually, in semiconductors condition 2) is different:

$$\frac{1}{m_{eff}} \, \frac{d\psi}{dx}$$
 is continuous (this is not discussed in Griffiths' book)

Follows from continuity of probability current $\frac{i\hbar}{2m} \left(\psi \frac{d\psi^*}{dx} - \psi^* \frac{d\psi}{dx} \right)$

We have 5 equations (4 boundary conditions and normalization) and 5 unknowns (B, C, D, F), and E). Possible to solve, but too many.

Simplification: trick of odd and even functions
$$f(-x) = f(x) \quad \text{even}$$

$$f(-x) = -f(x) \quad \text{odd}$$

Trick of odd and even functions for even potential, V(-x) = V(x)

In our case V(x) is even

Theorem

If V(-x) = V(x) and $\psi(x)$ is a solution of TISE with energy E, $\widehat{H}\psi = E\psi$, then $\psi(-x)$ is also a solution with the same energy, $\widehat{H}\psi(-x) = E\psi(-x)$. (simple to prove, and also quite obvious)

Then $\psi(x) + \psi(-x)$ is also a solution, and $\psi(x) - \psi(-x)$ is also a solution (because TISE is linear in ψ), (not necessarily normalized, but not a problem)

$$\psi(x) + \psi(-x)$$
 is even $\psi(x) - \psi(-x)$ is odd

(actually, if $\psi(x)$ is even or odd, then one of the combinations is zero)

Therefore, it is sufficient to find only even and odd solutions of TISE

Even solutions for finite square well

$$\psi(x) = \begin{cases} B \exp(kx), & x < -a \\ D \cos(lx), & |x| < a \\ B \exp(-kx), & x > a \end{cases}$$
 (no sin-term) only 3 unknowns:
$$B, D, E$$

Boundary condition at x = a (b.c. at x = -a gives the same):

$$\begin{cases} B \exp(-ka) = D \cos(la) \\ -kB \exp(-ka) = -lD \sin(la) \end{cases}$$

$$k = l \tan(la)$$

Divide equations: $k = l \tan(la)$ This equation gives energy E since k(E), l(E)

Rewrite:

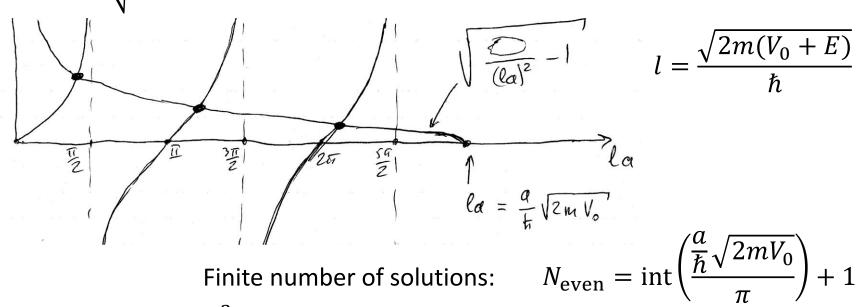
$$\tan(la) = \frac{k}{l} = \frac{\sqrt{-2mE}/\hbar}{\sqrt{2m(V_0 + E)}/\hbar} = \sqrt{\frac{-E}{V_0 + E}} = \sqrt{\frac{V_0}{V_0 + E}} - 1 = \sqrt{\frac{V_0 2m}{l^2 \hbar^2}} - 1$$

$$\tan(la) = \sqrt{\frac{\frac{a^2 V_0 2m}{\hbar^2}}{(la)^2} - 1}$$

$$\tan(la) = \sqrt{\frac{\frac{a^2 V_0 2m}{\hbar^2}}{(la)^2} - 1}$$

Even solutions for finite square well

Solve graphically



$$l = \frac{\sqrt{2m(V_0 + E)}}{\hbar}$$

$$N_{\text{even}} = \operatorname{int}\left(\frac{\frac{\alpha}{\hbar}\sqrt{2mV_0}}{\pi}\right) + 1$$

Limiting cases 1)
$$\frac{a^2V_02m}{\hbar^2} \gg 1$$
 (wide, deep well)

Limiting cases 1) $\frac{a^2V_02m}{\hbar^2}\gg 1$ (wide, deep well) Low levels: $la\approx (2n+1)\,\pi/2$, $E_n+V_0=\frac{l^2\hbar^2}{2m}\approx \frac{(2n+1)^2\pi^2\hbar^2}{2m(2a)^2}$

(similar to infinite well, but only odd states and $a \rightarrow 2a$)

2)
$$\frac{a^2V_02m}{\hbar^2}\ll 1$$
 (shallow, narrow well) Only one level: $la\approx a\sqrt{2mV_0}/\hbar\ll 1$, $|E|\ll V_0$

Even solutions for finite square well: normalization (not important)

$$\psi(x) = \begin{cases} B \exp(kx), & x < -a \\ D \cos(lx), & |x| < a \\ B \exp(-kx), & x > a \end{cases}$$

Normalization

$$\int_{-\infty}^{\infty} |\psi(x)|^2 dx = 1 \qquad \Longrightarrow \qquad \begin{cases} B = \frac{\exp(ka)\cos(la)}{\sqrt{a+1/k}} \\ D = \frac{1}{\sqrt{a+1/k}} \end{cases}$$

Odd solutions (similar)

$$\psi(x) = \begin{cases} B \exp(kx), & x < -a \\ C \sin(lx), & |x| < a \text{ (no cos-term)} \\ -B \exp(-kx), & x > a \text{ (-}B \text{ since odd)} \end{cases}$$

Boundary condition at x = a:

$$\begin{cases}
-B \exp(-ka) = C \sin(la) \\
kB \exp(-ka) = Cl \cos(la)
\end{cases}$$

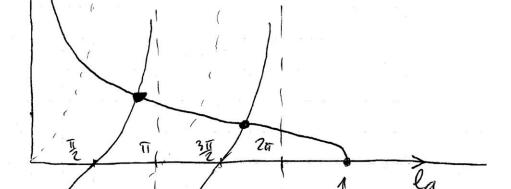
Divide equations: $k = -l \cot(la)$

After some algebra:
$$-\cot(la) = \sqrt{\frac{\frac{a^2V_02m}{\hbar^2}}{(la)^2}} - 1$$

Similar to the even case, the only difference: $tan(la) \rightarrow -cot(la)$ (just shifted by $\pi/2$)

$$-\cot(la) = \sqrt{\frac{\frac{a^2V_02m}{\hbar^2}}{(la)^2} - 1}$$

Odd solutions for finite square well



Number of solutions:

$$N_{\text{odd}} = \operatorname{int}\left(\frac{\frac{a}{\hbar}\sqrt{2mV_0}}{\pi} + \frac{1}{2}\right)$$

Total number of solutions:

$$N_{\text{even}} + N_{\text{odd}} = \operatorname{int}\left(\frac{\frac{a}{\hbar}\sqrt{2mV_0}}{\pi/2}\right) + 1$$

Total number of solutions:
$$l_a = \frac{a}{\hbar} \sqrt{2mV_0}$$
 $N_{\rm even} + N_{\rm odd} = {\rm int} \left(\frac{\frac{a}{\hbar}\sqrt{2mV_0}}{\pi/2}\right) + 1$ Limiting cases 1)
$$\frac{a^2V_02m}{\hbar^2} \gg 1 \quad \text{(wide, deep well)}$$
 Low levels: $la \approx n\pi$, $E_n + V_0 = \frac{l^2\hbar^2}{2m} \approx \frac{(2n)^2\pi^2\hbar^2}{2m(2a)^2}$

(these are remaining solutions for infinite well with $a \rightarrow 2a$)

No odd solutions if $V_0 < \frac{\pi^2 \hbar^2}{\Omega m c^2}$ 2) Shallow, narrow well

Digression: some integrals

$$\int_{-\infty}^{\infty} e^{-ax^2} dx = \sqrt{\frac{\pi}{a}}$$

(easy to derive by squaring and considering as a double-integral; also from normalization of a

Gaussian:
$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi D}} e^{-x^2/2D} dx = 1.$$

Take derivative in respect to parameter a

$$\int_{-\infty}^{\infty} (-x^2) e^{-ax^2} dx = -\frac{\sqrt{\pi}}{2a^{3/2}} \qquad \Rightarrow \qquad \int_{-\infty}^{\infty} x^2 e^{-ax^2} dx = \frac{\sqrt{\pi}}{2a^{3/2}}$$

Take another derivative with respect to a, similarly:

$$\int_{-\infty}^{\infty} x^4 e^{-ax^2} dx = \frac{3\sqrt{\pi}}{4a^{5/2}}$$
 (and so on: x^6 , x^8 , etc.)

Can construct a similar series, starting with

$$\int_0^\infty x \, e^{-ax^2} dx = \frac{1}{2a}$$