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Abstract

1
-Studies have shown that for a given set of bids, 

Payment Cost Minimization leads to lower customer payments 

as compared to Bid Cost Minimization.  In order to provide a 

thorough analysis of the two mechanisms an efficient solution 

methodology is required.  It has previously been shown that the 

surrogate optimization within the Lagrangian relaxation 

framework can lead to savings in the CPU time while ensuring a 

high-quality solution.  This paper develops an efficient 

methodology to solve Payment Cost Minimization using the 

surrogate optimization framework and the branch-and-cut 

method.  In the presented methodology the problem structure is 

exploited using Lagrangian relaxation and the relaxation of the 

integrality constraints is exploited using branch-and-cut.  The 

resulting method is further improved by using additional 

cutting planes that reduce the search space and by the advanced 

start to reinitialize the decision variables at each iteration.  For 

large Payment Cost Minimization problems, the method can 

find significantly better feasible solutions within less CPU time 

than that obtained by standard branch-and-cut methods 

implemented in commercial MIP solver.  The methodology 

developed in this paper is generic and can be used for solving 

other optimization problems.  
 

I. INTRODUCTION. 
 

RESENTLY, most Independent System Operators (ISOs) 
in the United States minimize the total bid cost by using 

the Bid Cost Minimization (BCM) auction mechanism.  After 
the total bid cost is minimized, the customer payments are 
determined by a different mechanism that assigns locational 
marginal prices (LMPs).  The total customer payment cost 
based on locational marginal prices is typically higher than 
the total minimized bid cost [10], [15].  An alternative 
auction mechanism discussed in the literature (i.e., in [10]) to 
determine the total customer payment cost is the Payment 
Cost Minimization (PCM).   
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 Studies have shown that both the PCM and the BCM 
problems are NP-hard, however, the BCM problem can be 
solved more efficiently by commercial MIP solvers than the 
PCM problem [9].  The principal difference between the 
PCM and the BCM problems is the method for defining the 
prices.  In the PCM problem, the market-clearing price 
(MCP) is determined by the marginal units.  Therefore, the 
MCP constraints couple individual offers in addition to the 
system demand and the start-up cost constraints.  The 
presence of such system-wide constraints makes the PCM 
problem hard to separate the problem into individual 
subproblems within the Lagrangian relaxation framework.   
 Since the Payment Cost Minimization is mixed-integer 
and can be efficiently linearized, it can be solved by the 
optimization methods that were specifically designed for 
solving linear mixed-integer problems (e.g., branch-and-cut).   
Within branch-and-cut [4], [12], and [14], the cutting planes 
that are valid across all constraints (especially the MCP 
constraint) of the PCM problem are hard to obtain.  This 
results in difficulties of obtaining feasible solutions, and 
providing a tight lower bound.  Branching operations, which 
are needed to tighten the bounds on the optimal value, 
increase drastically when the size of the problem increases.  
Therefore, most standard optimization methods (e.g., branch-
and-cut, Lagrangian relaxation) become inefficient and the 
new efficient solution methodology is required.       
 The surrogate subgradient method [6], [7], [10], and [16] 
is a variation of the subgradient method that aims at 
improving convergence of the Lagrangian relaxation method.  
The gist of the surrogate optimization approach is to find an 
optimal (or good suboptimal) dual solution quickly in order 
to obtain a feasible solution by removing the infeasibilities.  
Since the dual function and the subgradient are hard to 
obtain, in order to simplify the optimization process, the 
relaxed problem is not optimized exactly.  Rather, a surrogate 
dual and the surrogate subgradient are obtained.  Under 
simple conditions, the surrogate directions form an acute 
angle with the direction toward the optimal multipliers.   

The Lagrangian relaxation of the linearized PCM 
problem is a linear mixed-integer problem and can be 
optimized by the branch-and-cut method.  In the method, the 
integrality constraints are relaxed and the integral solution is 
found by adding valid cuts.  The difficulty that the method is 
facing (similarly to the original problem) is the presence of 
the MCP constraint.  Therefore, in order to obtain surrogate 
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subgradient directions efficiently, additional inequalities that 
better define integral solutions are required.  

The literature review is presented in Section II.  The 
linearized PCM problem formulation is presented in Section 
III.  In the PCM mechanism, the total payment cost is 
minimized.  The objective function consists of two terms, 
namely, the total payment cost and the total start-up cost.  
The optimization is performed subject to the system demand, 
the start-up cost, the MCP, and the generation capacity 
constraints.  The market clearing prices (MCPs) are 
determined by the marginal units.  The coupling of start-up 
cost, system demand and MCP constraints make the PCM 
problem hard to separate into smaller subproblems.   

The solution methodology is presented in Section IV.  In 
PCM the system demand constraints are relaxed.  The 
surrogate optimization condition, which is used to ensure that 
the surrogate subgradient directions are proper, can also serve 
as a valid cut to reduce the search space of the algorithm, 
thus leading to higher computational efficiency.  Additional 
valid cuts and constraints help to find the surrogate 
subgradient direction quickly by reducing the search space of 
the algorithm.  The relaxed PCM problem can be optimized 
more efficiently by using the combination of the surrogate 
optimization and standard branch-and-cut methods.   

Numerical results, presented in Section V, illustrate the 
effectiveness of the approach.  When implemented in 
CPLEX, the Lagrangian relaxation and surrogate 
optimization approach handles large problems more 
efficiently than the standard optimization methods of 
CPLEX.   

 
II. LITERATURE REVIEW 

 

 Several approaches have been developed and used for 
solving optimization programming problems, linear integer 
and mixed-integer programming problems in particular.  
They are Lagrangian relaxation and subgradient optimization 
[2], [3], [5], [11], Lagrangian relaxation and surrogate 
subgradient optimization [6], [7], [16], and branch-and-cut 
[4], [12] and [14]. 

Lagrangian relaxation is frequently used together with 
the gradient optimization method for differentiable problems 
and with the subgradient optimization for non-differentiable 
problems.  It has been shown that the gradient method 
converges with constant step size for differentiable problems 
under the Lipschitz condition [5] and that the subgradient 
method converges for the non-differentiable programming 
problems with diminishing and dynamic step size [11].  
Perhaps one of the most recent and exhaustive surveys on the 
subgradient methods for convex optimization is [2]. 

The surrogate subgradient approach was specifically 
developed to optimize large and complex dual functions 
within the Lagrangian relaxation framework [16].  In the 
surrogate subgradient method, a proper subgradient direction 

toward the optimal λ* can be obtained without obtaining the 
exact optimum of the relaxed problem at every iteration.  In 

other words, a good subgradient direction is obtained without 
optimizing the relaxed problem over the entire feasible set.  
An approximate solution of the relaxed problem has to satisfy 
the surrogate optimization condition. This condition ensures 
that a surrogate subgradient direction forms an acute angle 
with the direction toward the optimal multipliers [16] 
provided the optimal dual value is used to update the 
stepsize.  This condition also guarantees the lower bound 
property of the surrogate Lagrangian dual.  After an 
approximate solution of the relaxed problem is found, the 
Lagrange multipliers are updated.  The computational effort 
required to obtain an approximate solution is much less 
compared to that required to obtain the exact optimum at 
each iteration.  Therefore, the method’s efficiency enables 
solving very large and complex problems [6], [16].  It was 
shown that for separable problems, not all subproblems need 
to be solved optimally to find a proper surrogate subgradient 
direction [16].  In addition, the surrogate subgradient method 
can find good directions compared to the subgradient 
methods that require much computational effort leading to 
fast convergence. These directions are smooth from one 
iteration to the next, thus the zigzagging is avoided.    

The Lagrangian relaxation and surrogate subgradient 
optimization approach was specifically treated in [16] and 
[8].  The former paper develops the surrogate subgradient 
methodology and proves convergence of the method.  
Compared to subgradient and gradient methods, the surrogate 
subgradient approach finds better and smoother directions 
within shorter CPU time.  The latter paper extends the 
methodology to solving coupled problems. Convergence of 
the surrogate optimization within Lagrangian framework 
approach has been proved under certain conditions, namely, 
the upper bound on the step size and the surrogate 
optimization condition [16].  In addition, to ensure that the 
surrogate Lagrangian dual function provides a lower bound 
property, the surrogate optimization approach requires the 
optimal dual value.   

There have been several attempts to deal with the 
difficulty of obtaining the optimal dual value.  An 
approximation of the optimal dual value is introduced in [13].  
Studies indicate that when the approximation is an 
underestimate of L*, the algorithm converges to this 
approximate value rather than to L*.  When the 
approximation is an overestimate, the algorithm does not 
converge.  Since it is not known beforehand whether the 
approximate value is an underestimate or an overestimate, it 
takes several iterations to establish that.  For large and 
complex problems taking several additional iterations is very 
costly computationally.   

One of the recent attempts to avoid estimating the 
optimal dual value, while ensuring convergence of the 
surrogate optimization method, was undertaken in [6] by 
introducing a series of subgradient approximations 
converging to an a fortiori good subgradient direction.  
Theoretical insights and good preliminary results have been 
obtained.  
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 The branch-and-cut method has been of great interest for 
solving linear mixed-integer programming problems, i.e., 
problems with linear objective function and linear constraints 
[4], [12] and [14].  In the branch-and-cut method, the valid 
cuts, i.e., cuts that reduce the feasible region of the integer-
relaxed problem without cutting off feasible points of the 
original problem, are added after relaxing the integrality 
constraints.  Branching is then frequently used to decompose 
the problem into two or more subproblems while searching 
for the global optimum.  The branch-and-cut method requires 
the global validity of the cuts in order to efficiently split the 
problem at a given node of the branch tree.  Therefore when 
the facet-defining inequalities are not easily obtainable the 
performance of the branch-and-cut significantly deteriorates, 
and the computational efficiency of the commercial software 
that utilizes branch-and-cut is low.   

 
III. PROBLEM FORMULATION 

 
This subsection presents the linearized version of the 

general definition of the Payment Cost Minimization problem 
and demonstrates how the surrogate optimization framework 
and branch-and-cut can be used to solve Payment Cost 
Minimization.   

In the Payment Cost Minimization problem, the total 
customer payment cost is minimized subject to the system 
demand, start-up cost and the market-clearing price 
constraints.  Standard simplifying assumptions, which are 
usually made in the existing literature (e.g. in [10]) are used.  
The system demand Pd(t) is deterministic at each hour t and 
is known.  Transmission and ramp-rate constraints are 
omitted for simplicity and are not considered in this paper.  
Start-up costs are given and fully compensated, and 
participants submit a single-block offer with start-up cost, 
offer price, and maximum and minimum generation levels for 
each hour t. 

Consider a market with I participants (sometimes 
referred in the literature to as offers or units) enumerated by 
i=1,2,…,I.  For each offer i, pi(t) denotes the offer generation 
level at time t, Si(t) denotes the start-up cost at time t, which 
is incurred if and only if an offer i is turned “on” at time t, 
after being “off” at time t-1. 

The PCM problem can be formulated in the following 
way [10]: 
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 The decision variables of the problem are MCP(t), ui(t), 
xi(t) and pi(t) for all i=1,…,I and t=1,…,T.  The latter two, 
though not included into the objective function, enter start-up 
cost and system demand constraints respectively as shown 
below. 
 The problem is optimized subject to the following 
constraints: 
 
 
 

 1. System demand constraints: 
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 The system demand has to be satisfied exactly by the 
selected offers at each time t. 
2. Start-up cost constraints:  

 ( ) ( ) ( )( ) ( )TtIitxtxtu iii ,...,2,1,,1 =∈∀−−≥   (3) 

The start-up cost binary decision variable ui(t) equals 1 
at time t if and only if an offer i is turned “on”, which 
corresponds to xi(t)=1, from an “off” state at time t-1 (this 
corresponds to xi(t-1)=0), and 0 otherwise.   

3. MCP constraints: 

Currently, the MCP is determined by a price which is set 
by the marginal unit, i.e. a unit that generates power at 
neither minimum nor maximum generation level.  
Mathematically, the relations between the MCP and binary 
decision variables x are as follows 

 ( ) ( ) ( )TtIityctMCP ii ,...,2,1,, =∈∀≥   (4a) 
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(4c) 
 

here ic denotes the offer price of an offer i and for simplicity 

is assumed to be constant for all t.  
Constraints (3), (4a) and (4c) are coupling with respect 

to the binary variables xi(t).  The constraints (3) couple xi(t) 
in time t, (4a) and (4c) couple xi(t) by offers i. 

As discussed in the Introduction section, the facet-
defining inequalities that define convex hulls for the decision 
variables xi(t) need to be valid across all offers and all time 
periods and are hard to obtain.  
4. Generation capacity constraints: 

 ( ) ( ) ( ) ( ) ( ) ( )TtIitptxtptptx iiiii ,...,2,1,,max,min, =∈∀≤≤  (5) 

where ( ) ( )tptp ii max,min, /  are minimum/maximum generation 

levels of a unit i at time t;  
Generation levels of selected offers should be within the 

bounds specified by pi,min(t) and pi,max(t) at each hour.  If an 
offer i is “off” at time t, then the generation level is zero.  It 
has to be noted that the feasible region of power generation 
levels is discontiguous since pi(t) exhibits a jump from 0 to 
pi,min(t).   

 
IV. SOLUTION METHODOLOGY 

 

A. Surrogate Subgradient Method 

In terms of the PCM problem, the relaxed problem is 
written as follows: 
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 The relaxed problem (6) is to be minimized subject to 
the constraints (2)-(5) and the following surrogate 
optimization condition 
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The multipliers are updated in the following fashion: 
 ( ) ( ) ( )( )tpgctt kkkk ~1 +=+ λλ ,  (8) 

where ( )( )tpg k~  is the surrogate subgradient defined by  
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It was shown in [16], when the conditions (7) and (10) 
are satisfied, the surrogate Lagrangian dual function provides 
the lower bound for the feasible cost, that is  
 ( ) ( ) ( ) ( )( ) *,~,, LtutptMCPtL kkkk <λ .  (11) 

The stepsize defined in (10) requires the optimal dual 
value.  When the optimal dual value is unknown, the upper 
bound on the stepsize ck is unknown, therefore convergence 
cannot be guaranteed and the lower bound property (11) is 
lost.  

As shown in [7], the multipliers converge to the 
optimum without invoking the optimal dual value.  The 
necessary condition for convergence is achieved by 
decreasing the distance between consecutive multipliers, 
which mathematically is expressed as 
 10,11 <<<−=− −+ ααλλαλλ kkkk .  

(12) 

 The stepsize that satisfies (12) is 
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  The sufficient condition for convergence is established 
by establishing that the stepsize is never “too small” so that 
the multipliers do not get “stuck.”  

Mathematically, ∀K , ∃k≥K, and the stepsize satisfies  
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In other words, (14) occurs periodically but infinitely often.  

 While the value of α cannot be specified beforehand, it 

was shown in [7] that there exists αi from any increasing 

sequence {αi} bounded by 1 from above such that the 

multipliers converge to the optimum when the stepsize ck(αi) 
defined in (13) is used.  

 In other words, for any sequence {αi} such that 

0<α1<α2<…<1, there always exists the limit 

( ) ( )( )k

i

kk

k
i xgc ~lim αλλ +≡

∞→
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1

lim λλ
α

=
−→

i
i

.  In other 

words, by choosing α  to close to 1, the multipliers converge 

to λ*.  
 Since no intrinsic properties of a particular problem are 
required to establish convergence of the surrogate 
subgradient method, this method can be used to solve a broad 
class of linear mixed-integer problems.  

 
B. Valid Cuts and Additional Constraints 

As mentioned above, the problem (6) subject to 
constraints (2)-(5) is NP-hard and the problem of obtaining 
the subgradient is hard.  In order to alleviate the 
computational burden, the surrogate subgradient satisfying 
condition (7) is obtained instead of the subgradient.  Very 
often a feasible solution that satisfies condition (7) is difficult 
to find.  Therefore, additional cuts that define integral 
solutions are required.  The idea behind using the additional 
cuts and constraints is to make the complexity of obtaining 
the surrogate subgradient low regardless of the size of the 
problem.  

While additional valid cuts largely depend on the 
structure of the problem under consideration, the surrogate 
subgradient condition can always be used as a valid cut.  In 
terms of the PCM, the following cut is valid        
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This cut can significantly reduce the search space of the 
algorithm, and help to define the integral hull.  This often 
obviates the need to perform branching operations and 
increases the overall efficiency of the algorithm.  
 In terms of the PCM problem, additional valid cuts can 
be found using the start-up cost constraints (3) and the 
market-clearing price (MCP) constraints.  In order to increase 
the efficiency of branch-and-cut, the valid cuts have to be 
globally valid across all offers and all time periods.   
 Each constraint in (3) relates only neighboring time 
periods (t and t-1), and the standard cuts used in branch-and-
cut handle these constraints locally.  Since the global 
optimality of the sought-for solution is desired, global 
validity if the cuts across all time periods is necessary.  
 Consider  
 ( ) ( ) ( )( ) ( )Iixxu iii ∈∀−≥ ,011   (3a) 

and  
 ( ) ( ) ( )( ) ( ).,122 Iixxu iii ∈∀−≥   (3b) 

 Adding the constraints (3a) and (3b) yields 
 ( ) ( ) ( ) ( )( ) ( ).,0212 Iixxuu iiii ∈∀−≥+   (3c) 

 The latter constraint is “more” globally valid than (3).  A 
more general expression of (3c) is  
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 The family of constraints (3d) generates valid cuts that 
are handled globally within the branch-and-cut framework.  
Therefore, the lower bound becomes tighter and the global 
search within the branching tree can be organized more 
efficiently.  
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 Like constraints (3), while constraints (4a) are system-
wide, they are handled locally using branch-and-cut since the 
MCP decision variable relates only each offer at a time.  In 
order to handle such constraints globally, the aggregated 
form of (4a) is preferable.  

 ( ) ( ) ( )Tttyc
I

tMCP
I

i
ii ,...,2,1,

1

1

=∀∑≥
=

  (4a.1) 

 In (4a.1), the MCP decision variables are related to all 
offers explicitly and are valid across all offers, therefore, 
constrains (4a.1) define valid cuts that are globally valid 
within the branch-and-cut framework.  
 Since the exact optimality of the relaxed problem within 
the surrogate optimization framework is not required, a 
feasible solution satisfying (7) can be found by first cutting 
off other feasible solutions and then by optimizing over the 
remaining space.  Thus, while additional constraints may not 
be valid in the classical sense, they further reduce the search 
space of the algorithm and help obtain the surrogate 
subgradient fast.       

For example, by introducing ΔMCP(t), the additional 
cuts can be specified at the iteration k+1 in the following way  
 MCPk(t)-ΔMCP(t)≤MCPk+1(t)≤MCPk(t)+ΔMCP(t),  (16) 

for t=1,…,T.  The inequalities in (16) ensure that the search 
space is small enough so that the surrogate direction can be 
obtained quickly.  Here MCPk(t) is the MCP decision 
variable value at time t computed at the iteration k.   
 In addition, the initialization of the decision variables 
values that are a priori close to optimal values can save 
computational effort, and reinitialization of the decision 
variables can further improve the convergence speed.  
   

V. NUMERICAL TESTING 

 
 In this section, three examples are presented.  Example 1 
demonstrates the convergence aspect of the surrogate 
subgradient method.  A small instance of the PCM problem is 
tested.  Convergence of the method is tested against that of 
the surrogate optimization method with the stepsize defined 
in (10).  The method is then used for solving large PCM 
problems.  Example 2 tests the impact of the reinitialization 
of the decision variables on the performance of the method.  
A medium sized problem is generated and tested.  Example 3 
demonstrates the performance of the method for large-scale 
PCM problems and provides the robustness results.  All 
medium and large-scale problems are generated using the 
perturbed data from the ISO-NE for May 1999. 

The algorithm presented is tested using CPLEX on Intel® 
Core™ i7 CPU Q 720 @ 1.60 GHz and 4.00 GB RAM.  
 CPLEX is used for solving the relaxed problem within 
the Lagrangian relaxation framework.  In addition, the 
solution obtained in CPLEX using branch-and-cut can serve 
as a benchmark for evaluating the effectiveness of the 
approach. 
Example 1: Small Payment Cost Minimization problem. 

Consider the following 5-hour 4-offer PCM problem as 
described in Tables I and II.  

TABLE I 
SUPPLY OFFER PARAMETERS FOR EXAMPLE 1 

 Min MW Max MW $/MW 
Start Up 
Cost ($) 

Offer 1 5 45 10 0 

Offer 2 5 45 20 0 

Offer 3 0 12 100 50 

Offer 4 5 80 30 1200 

 
TABLE II 

DEMAND PARAMETERS FOR EXAMPLE 1 
 Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 

System 
Demand (MW) 

100 95 110 120 115 

 
 Small problems like the one described in this Example, 
can be solved analytically.  Therefore, the optimal dual value 
can be easily verified to be equal to 16650.    
 

 
Fig. 1: Performance comparison of the surrogate subgradient method with 

different stepsizes. The dashed line represents 
2

*λλ −k

a and the solid line 

represents
2

*λλ −k

b .  Here 
k

aλ is updated using (10) and 
k

bλ is updated 

using (13). 
 

 Figure 1 illustrates the comparison of the two methods 
by comparing the Euclidean distances between the current 
multipliers and the optimal multiplier.  The stepsizes are 
using the stepsizes defined in (10) and (13), where α is 

chosen to be equal to 0.975.   
 While the multipliers move closer to the optimum as 
every iteration when the formula (10) for the stepsize is used, 
the multipliers converge faster to the optimum when the 
stepsize satisfying relation (13) is used. 
 
 Example 2: Medium-sized Payment Cost Minimization 

problem.  Consider a 25-offer 24-hour PCM problem.  Since 
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the relaxed PCM problem is NP-hard, the complexity of the 
problem of obtaining the surrogate subgradient drastically 
increases as the size of the problem increases.  Therefore, 
while the surrogate subgradient that satisfies the surrogate 
optimization condition (7) can be obtained quickly for small 
problems, in order to obtain the surrogate subgradient quickly 
for the problems of a medium size, additional constraints that 
define integral solutions (not necessarily optimal) and 
reinitialization of the decision variables are required.  
Constraints (16) accomplish both tasks.  By restricting the 
values for the MCP variables, the complexity of the relaxed 
problem decreases.  In addition, boundaries of the feasible 
region specified by the additional constraints in (16) provide 
good starting points for the branch-and-cut method.  
 The results are summarized in the Table III.  
 

TABLE III 
RESULTS FOR EXAMPLE 2 

Method 
Lower 

bound ($) 

Upper 

bound ($) 

Gap 

(%)

CPU 

time (s)

Surrogate 
optimization 
with (16) 

3,667,052 3,886,965 5.65 300 

Surrogate 
optimization  
without (16) 

3,643,081 4,029,185 9.58 300 

 
 The surrogate subgradient is obtained quicker when the 
additional constraints are used.  Therefore, the method 
converges faster and provides a tighter lower bound.  In 
addition, simple local search heuristics can obtain a better 
feasible solution based on a better dual solution.  
  

 Example 3: Large scale Payment Cost Minimization 

problem.  This example demonstrates how the surrogate 
subgradient method with the stepsize satisfying relation (13) 
can be used to solve the large scale Payment Cost 
Minimization problems.  The robustness of the method is 
tested.  

When solving the PCM problems of such size using 
CPLEX, the CPU time and the duality gap are unreasonably 
high as indicated in the Table VI.  This confirms the 
difficulties described in Section I.  In contrast, when the 
surrogate optimization within the Lagrangian relaxation 
framework is used subject to (16), these difficulties are 
overcome.  Lagrangian relaxation is first used to relax the 
system demand constraints, after that the relaxed problem (6) 
is optimized subject to the surrogate optimization condition 
(7).  Even though the resulting problem is still NP-hard, it 
can be solved efficiently after imposing conveniently chosen 
set of constraints (16), which reduce the search space.  The 
multipliers are updated iteratively according to (8).  At each 
iteration, heuristics are used to remove infeasibilities that 
result from relaxing the systems demand constraint to create 
a feasible solution.  The quality of this solution is quantified 
by the dual cost.  

 The results presented in the Table IV illustrate the 
method performance gain over the standard branch-and-cut 
method.  Such a drastic improvement of performance is 
largely due to saving the effort of finding the surrogate 
subgradient directions and a warm start procedure that 
utilizes the best available information about the decision 
variables from previous iterations.   

 
TABLE IV 

RESULTS OBTAINED BY THE TWO METHODS 

Method 
Lower bound 

($) 

Upper bound 

($) 

Gap 

(%) 

CPU 

time (s) 

B&C and SO 55,244,634 56,174,579 1.66 600 

B&C  39,703,846 87,671,446 54.71 18000 

 
Results presented in the Table V demonstrate that 

initialization of the MCP variables plays a significant role in 
finding good feasible solution and obtaining a tight lower 
bound.  In practical scenarios, the MCP variables can be 
initialized based on the values available from previous 
planning horizons. 

 
TABLE V 

RESULTS OBTAINED BY THE SURROGATE OPTIMIZATION WITH 

AND WITHOUT THE INITIALIZATION 

Method 
Lower bound 

($) 

Upper bound 

($) 

Gap 

(%) 

CPU 

time (s) 

B&C and SO 
w/MCP 
initialization 

55,244,634 56,174,579 1.66 600 

Branch-and-cut 
wo/MCP  
initialization 

55,140,679 72,217,885 23.64 600 

 
Results presented in the Table VI show that heuristics 

can obtain good feasible solutions with quantifiable quality.  
The comparison is made between the local search heuristic, 
and the heuristic that assigns the maximum offer generation 
to the least expensive offer in terms of the offer and the start-
up costs.  That is, the offers with the smallest values 
(similarly to [10])  
 ( ) ( )tptSc iii

max/+ ,  (17) 

are turned on one by one until the leftover system demand is 
less than the maximum generation level of the next expensive 
offer, which is chosen to set the initial approximation of the 
MCP. 
 

TABLE VI 
RESULTS OBTAINED BY THE SURROGATE OPTIMIZATION 

USING DIFFERENT HEURISTICS 

Method 
Lower bound 

($) 

Upper bound 

($) 

Gap 

(%) 

CPU 

time (s) 

B&C and SO 
w/local search 

54,695,043 55,704,278 1.81 600 

Branch-and-cut 
w/(17) 

54,677,055 57,554,213 4.99 600 
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 Both heuristics are capable of obtaining good feasible 
solutions.  Since the local search heuristic is more expensive 
computationally, the heuristic based on (17) is preferable.  

In order to assess the algorithm’s robustness, twenty 24-
hour problems with 300-offer problems were generated. The 
feasible solution is determined using the heuristic (17).  The 
computation results of selected instances are summarized in 
Table VII. 

 
TABLE VII 

RESULTS FOR EXAMPLE 3 

Instance 
Gap 

(%) 
LB ($) UB ($) 

CPU time 

(s) 

1 1.66 55,244,634 56,174,579 600 

2 2.44 57,266,074 58,701,285 600 

3 1.81 54,695,043 55,704,278 600 

Mean 2.01    

St. Dev. 0.42    

 
Standard MIP optimization software (here CPLEX) can 

handle small PCM problems with relative ease.  However, 
large problems pose much bigger computational challenges 
for MIP solvers such as CPLEX since the facet-defining cuts 
cannot be easily obtained and the number of branching 
operations increases dramatically as the number of offers 
increases.  The combination of the surrogate optimization 
approach and branch-and-cut becomes superior to the 
standard branch-and-cut method for large problems.   

 
VI. CONCLUSION 

 
The problem that minimizes the customer payments 

directly (PCM) is shown to possess several desirable 
economic properties.  The investigation of other properties it 
may possess and the comparison with other mechanisms that 
compute customer payments is inhibited when an efficient 
solution methodology in unavailable.  Current research was 
prompted by the fact that existing optimization methods are 
inefficient for solving PCM as pointed out in the 
introduction.  The difficulties that arise when using known 
optimization methods are overcome by a successful 
“marriage” of the surrogate optimization with the branch-
and-cut method.  The methodology developed in this paper is 
generic, and can be used for solving linear mixed-integer 
problems and is efficiently implemented in commercial MIP 
solvers.   
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