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Abstract—Bilateral contracts are important risk-hedging in-
struments constituting a major component in the portfolios held
by many electric power market participants. However, bilateral
contract negotiation is a complicated process as it involves risk
management, strategic bargaining, and multi-market participa-
tion. This study analyzes a financial bilateral contract negotiation
process between a generation company and a load-serving entity
in a wholesale electric power market with congestion managed
by locational marginal pricing. Nash bargaining theory is used
to model a Pareto-efficient settlement point. The model predicts
negotiation outcomes under various conditions and identifies
circumstances in which the two parties might fail to reach an
agreement. Both analysis and simulation are used to gain insight
regarding how these negotiation outcomes systematically vary in
response to changes in the participants’ risk preferences and price
biases.

Index Terms—Conditional value-at-risk, financial bilateral con-
tract, locational marginal price, Nash bargaining theory, negotia-
tion, risk aversion, wholesale electricity market.
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Location of a GenCo and LSE in a financial
bilateral contract negotiation.

GenCo’s fixed production rate (MW).

GenCo’s risk-aversion factor.

LSE’s risk-aversion factor.

Contract period (hours).

Sum of LMPs realized at bus during .

Expectation calculated using true probability
measure .

Bias affecting probability measure .

Bias affecting probability measure .

Expectation calculated by GenCo using
biased probability measure .
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Expectation calculated by LSE using biased
probability measure .

Confidence level for GenCo and LSE.

Conditional value-at-risk calculated using
true probability measure .

Conditional value-at-risk calculated by
GenCo using biased probability measure

.

Conditional value-at-risk calculated by LSE
using biased probability measure .

Hourly contract amount (MW).

Lower bound for negotiated contract amount.

Upper bound for negotiated contract amount.

Hourly contract strike price ($/MWh).

Lower bound for negotiated strike price.

Upper bound for negotiated strike price.

GenCo’s return-risk utility function.

LSE’s return-risk utility function.

GenCo net earnings.

LSE net earnings.

GenCo net earnings if no contract is signed.

LSE net earnings if no contract is signed.

I. INTRODUCTION

C OSTLY lessons learned from the California energy crisis
in 2000–2001 were that overreliance on spot markets can

lead to extremely volatile prices as well as a market design vul-
nerable to gaming. The bilateral contracts for longer-term trades
that were disallowed by the California regulators could have re-
duced spot price volatility, discouraged gaming behaviors by
power traders, and provided a much-needed risk-hedging instru-
ment for the three largest investor-owned utilities.

Bilateral contracting is the most common form of trade ar-
rangement in many electricity markets. Examples include the
continental European electricity market, the Texas (ERCOT)
wholesale power market, the Nordic electricity market, and the
Japanese electric power exchange [1]. Traders in these mar-
kets routinely hedge their price risks by signing bilateral con-
tracts. An example of such a contract is a contract-for-difference
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(CFD) that specifies a strike price ($/MWh) at which a partic-
ular MW amount is to be exchanged at a particular reference
location during a particular contract period. If the actual price
at the reference location differs from the strike price, the advan-
taged party is required to “make whole” the disadvantaged party
by paying the difference [2, Section V-A].

Given the prominent role played by negotiated bilateral con-
tracts in power markets, a crucial question is how the parties
to such contracts successfully negotiate the terms of their con-
tracts. The negotiation process can be extremely complicated,
involving considerations of both risk management and strategic
gaming.

In particular, a participant in a bilateral contract negotiation
will typically be concerned not only with expected net earnings
but also with risk, i.e., the possibility of adverse deviations from
expected net earnings. Consequently, the participant will pre-
sumably try to negotiate a contract that achieves a satisfactory
trade-off between expected net earnings and risk in accordance
with its risk preferences.

From a game theoretic perspective, each party to a negotia-
tion must always keep in mind that a strategy of trying to unilat-
erally improve its own return at the expense of the other party
will typically be self-defeating [3]. Although a party could in-
sist on pushing the point of agreement in its favor, this effort
will be in vain if the other party then decides to walk away. A
typical bilateral contract negotiation process involves elements
of both cooperation and competition [4]. Moreover, these con-
siderations of risk and strategic gaming can arise across several
distinct markets at the same time.

Within the field of power economics, only a few researchers
to date have studied the bilateral contract negotiation process.
Khatib and Galiana [5] propose a practical process in which the
bargainers take both benefits and risks into account. They claim
that their proposed process will lead to agreement on a mutually
beneficial and risk-tolerable forward bilateral contract. Song et
al. [6] and Son et al. [7] analyze bidding strategies in a bilateral
market in which generation companies (GenCos) submit bids to
loads. Necessary and sufficient conditions for the existence of a
Nash equilibrium in bidding strategies are then derived. In a se-
ries of studies, Kockar et al. [8]–[10] examine important issues
arising for mixed pool/bilateral trading. Although the number
of studies focusing on bilateral contract negotiation in electric
power markets is small, a large number of electric power re-
searchers have examined the related topics of risk management
and portfolio optimization [2], [11]–[26].

This study analyzes a negotiation process between a GenCo
and a load-serving entity (LSE) for a financial bilateral contract,1

taking into account considerations of risk management, strategic
gaming, and multi-market interactions. Given the small amount
of previous research on this technically challenging problem, a
relatively simple form of power purchase agreement is used to
permit the derivation of analytical and computational findings
with clear interpretable results. Our goal is to provide a basic

1In U.S. ISO-managed electric power markets such as the Midwest ISO, a bi-
lateral transaction that involves the physical transfer of energy through a trans-
mission provider’s region is referred to as a physical bilateral transaction. A bi-
lateral transaction that only transfers financial responsibility within and across a
transmission provider’s region is referred to as a financial bilateral transaction.

foundation upon which future research on financial bilateral ne-
gotiation in power markets can build.

Specifically, to model the financial bilateral negotiation
process between the GenCo and LSE, we introduce a key tool
from cooperative game theory: namely, Nash bargaining theory.
In contrast to non-cooperative game theory (e.g., Nash equi-
librium), cooperative game theory assumes that participants in
strategic situations are able to bargain directly with each other
to reach binding (enforceable) decisions. As will be clarified
below, Nash bargaining theory is a particular cooperative-game
modeling of a negotiation process that constrains negotiated
outcomes to satisfy basic fairness and efficiency criteria thought
to be important in real-world bargaining situations. It also iden-
tifies circumstances in which the parties to the negotiation
might fail to reach an agreement.

We use Nash bargaining theory to study how negotiated out-
comes between the GenCo and LSE depend on their relative
aversion to risk and on the degree to which their price estimates
are biased. In reaching these negotiated outcomes, the GenCo
and LSE each take into account their perceived trade-off be-
tween risk and expected return. Risk is measured using condi-
tional value at risk (CVaR), a risk measure now widely adopted
in financial practice. Making use of both analytical modeling
and computational experiments, we carefully investigate how
the negotiated outcomes for the GenCo and LSE vary systemat-
ically in response to changes in their risk preferences and price
biases.

The remainder of this paper is organized as follows.
Section II describes the model of a contract-for-difference
negotiation process between a GenCo and an LSE. Technical
results regarding Nash bargaining outcomes for the GenCo
and LSE under different structural conditions are derived in
Section III. A five-bus wholesale power market test case is used
in Section IV to determine the sensitivity of Nash bargaining
outcomes. Concluding remarks and a discussion of future
extensions are provided in Section V.

II. ANALYTICAL FORMULATION OF A FINANCIAL BILATERAL

CONTRACT NEGOTIATION PROBLEM

A. Overview

This section develops an analytical model of a GenCo G and
an LSE L attempting to negotiate the terms of a financial bilat-
eral contract in order to hedge price risk in a day-ahead energy
market with congestion managed by locational marginal prices
(LMPs). Both G and L are located at the same bus, so the price
risk they face arises from their uncertainty regarding future LMP
outcomes at their common bus.

Each participant G and L is assumed to express its preferences
over possible terms for its negotiated contract by means of a re-
turn-risk utility function. Each participant is assumed to know
the utility function of the other participant. Thus, expressed in
standard game theory terminology, the negotiation process be-
tween G and L is a two-player cooperative game with a com-
monly known payoff matrix.

The day-ahead energy market in which G and L participate
entails core features of actual restructured day-ahead energy
markets in the U.S. Specifically, during each operating day D,
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a market operator runs DC optimal power flow (DC-OPF) soft-
ware to determine hourly dispatch schedules and LMPs for the
day-ahead energy market on day D+1. It is assumed that each
GenCo reports its true cost and capacity conditions to the ISO.
The DC-OPF is implemented as in Yu et al. [27] except that, for
simplicity, ancillary services aspects are omitted.

B. GenCo’s Perspective

To be concrete, GenCo G is assumed to own a single power
plant located at bus . The production of the power plant is set
at a fixed rate (MW) for which its outage risk is assumed to
be zero. Since the plant’s production rate is fixed, G is not per-
mitted to bid strategically in the day-ahead energy market. For
simplicity, it is assumed that G has a long-term supply contract
for fuel, implying its fuel costs per MW of production are es-
sentially fixed. The total variable production cost ($/h) for G’s
power plant in any hour is given by

(1)

Under the above assumptions, the only risk facing G is price
risk induced by the variability of LMP outcomes at its own bus
. In an attempt to reduce its price risk, suppose G enters into

a financial bilateral contract negotiation with an LSE L, also
located at bus .

More precisely, suppose G and L attempt to negotiate the
hourly contract amount (MW) and strike price ($/MWh)
for a contract-for-difference over a specified period from hour
1 to hour T. Let denote the LMP realized at bus for
any hour during the period. Under the terms of this CFD, if

differs from the strike price S, then the advantaged party
must compensate the disadvantaged party. For example, if S ex-
ceeds , the advantaged buyer L must pay the disadvan-
taged seller G an amount ; and conversely.

After signing a CFD with hourly contract amount and
strike price , the combined net earnings of G from its day-
ahead energy market sales and its CFD, conditional on any given
realization of values over the contract period from hour
1 to hour T, are given by

(2)

Let the net earnings attained by G from its day-ahead energy
market sales be denoted by

(3)

where

(4)

Then G’s net earnings function (2) can be expressed as

(5)

Note that the time-value of money is not considered in G’s
net earnings function (2). The introduction of a discount rate
could easily be incorporated to obtain a standard present-value
representation for intertemporal net earnings without changing
the analysis below. However, for expositional simplicity, it is
assumed that the contract period T for the CFD under study here
is of such short duration that the discount rate across all hours
of T can be set to zero.

GenCo G is a profit-seeking company that negotiates contract
terms in an attempt to attain a favorable tradeoff between ex-
pected net earnings and financial risk exposure. To accomplish
this, it makes use of a return-risk utility function to measure its
relative preferences over return-risk combinations.

The best-known example of a return-risk utility function is
the mean-variance utility function traditionally used in finance
to evaluate portfolios of financial assets (e.g., stock holdings).
Often mean-variance utility functions are specified in a simple
parameterized linear form:

.
Modern finance has moved away from the use of variance as

a measure of financial risk for two key reasons. First, the re-
turn rates for many financial instruments appear to have thick-
tailed probability density functions (PDFs) for which second
moments (hence variances) do not exist.2 Second, in financial
contexts, upside deviations from expected returns are desirable;
only downside deviations satisfy the intuitive idea that “riski-
ness” should refer to the possibility of “adverse consequences.”

Consequently, in place of variance, modern financial re-
searchers now frequently measure the financial risk of an asset
portfolio in terms of single-tail measures such as VaR and CVaR .
Basically, for any given confidence level , the VaR of a portfolio
is given by the smallest number l such that the probability that
the loss in portfolio value exceeds l is no greater than . In
contrast, the CVaR of a portfolio is defined as the expected loss
in portfolio value during a specified period, conditional on the
event that the loss is greater than or equal to VaR. Thus, CVaR
informs a portfolio holder about expected loss conditional
on the occurrence of an unfavorable event rather than simply
indicating the probability of an unfavorable event.3

In this study the return-risk utility function of GenCo G is
assumed to have the following parameterized linear form:

(6)

2A PDF ���� for a random variable� is said to be thick tailed if ���� and/or
����� approaches zero relatively slowly (e.g., relative to a normal PDF) as ���
approaches infinity. If the convergence is sufficiently slow, the usual integral
characterization for a second moment will not be well defined for this PDF.
In practical terms, this means that the sample variance formed for such a PDF
on the basis of � samples will diverge to infinity almost surely as � becomes
arbitrarily large.

3See [2], [27], [28], and [29] for a more detailed discussion of the meaning of
VaR and CVaR and of the conceptual and technical advantages of CVaR relative
to VaR. This study adopts the original Rockafeller and Uryasev [28] convention
of defining CVaR as the right tail of a loss distribution so that CVaR is a direct
measure of risk, i.e., CVaR increases as risk increases. Some risk-management
researchers prefer to define CVaR as the left tail of a net earnings distribution.
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In (6), denotes G’s expected net earnings, and
denotes the CVaR associated with G’s “loss

function,” i.e., the negative of G’s net earnings function (2),
conditional on any given confidence level . The parameter
in (6) is G’s risk-aversion factor that determines G’s preferred
tradeoff between expected net earnings and risk exposure as
measured by CVaR.

C. LSE’s Perspective

On each day , the LSE L submits a demand bid to purchase
power at bus from the day-ahead energy market for day
in order to service retail customer load at bus on day . This
demand bid consists of a 24-h load profile. Retail customers at
bus pay L a regulated rate ($/MWh) for electricity.

At the end of day , the LSE is charged the price
($/MWh) for its cleared demand for hour of day , where

is the LMP determined by the market operator for bus
in hour via DC-OPF. Any deviation between L’s cleared

demands and its actual demands for day are resolved
in the real-time market for day using real-time market
LMPs. However, for simplicity, it is assumed that this deviation
is zero.

The risk faced by L on each day arises from its uncertainty
regarding the prices it will be charged for its cleared demand. As
detailed in Section II-B, it is assumed that L attempts to partially
hedge its price risk at bus by entering into a negotiation with
GenCo G at bus for a CFD contract over a given contract period
from hour 1 to hour T. The negotiable terms of this CFD consist
of an hourly contract amount (MW) and an hourly strike
price ($/MWh).

Suppose L and G have signed a CFD for a contract amount
at a strike price . Let denote L’s cleared day-ahead

market demand at bus for any hour during the contract pe-
riod. Then the combined net earnings of L from its day-ahead
energy market purchases and its CFD, conditional on any given
realization of values over the CFD contract period from
hour 1 to hour T, are given by

(7)

As was done for G, let the net earnings of L from its day-ahead
energy market purchases be denoted by

(8)

Then, using (4), the net earnings function (7) for L can be ex-
pressed as

(9)

Finally, similar to G, it is assumed that L uses a return-risk
utility function to represent its preferences over combinations

of expected net earnings and risk. In particular, it is assumed L’s
utility function takes the following parameterized linear form:

(10)

In (10), denotes L’s expected net earnings, and
denotes the CVaR associated with L’s “loss

function,” i.e., the negative of its net earnings function (7),
conditional on any given confidence level . The parameter
in (10) is L’s risk-aversion factor that determines L’s preferred
tradeoff between expected net earnings and risk exposure as
measured by CVaR.

D. Effects of GenCo and LSE Price Estimation Biases on
Expected Price and Perceived Risk

This section examines how biases in the PDFs used by GenCo
G and LSE L to represent their uncertainty about the LMP out-
comes at their bus affect their price expectations and perceived
risk exposure. These results will be used in Section IV to deter-
mine how these biases affect the outcomes of financial bilateral
contract negotiation between G and L.

As seen in (5) and (9), the derivatives of the net earnings func-
tions and with respect to the contract amount depend
on prices only through the LMP summation term defined in
(4). Consequently, price biases distort the contract amount
negotiated by G and L only to the extent that these price biases
affect the PDFs used by G and L for .

Suppose the true uncertainty in over the contract period
can be represented by a probability measure defined over a
sigma-field of measurable subsets of a sample space of el-
ementary events, i.e., by the probability space . Sup-
pose, instead, that G and L perceive this uncertainty to be de-
scribed by probability spaces and , re-
spectively, where and differ from by constant shift
factors and as follows:

(11)

(12)

The constant shift factors and will cause the first mo-
ments (means) of and to deviate from the first moment
(mean) of , assuming these first moments exist. However, any
higher moments of will be unchanged by these constant shift
factors.

Let the corresponding PDFs for under the three different
probability measures , , and be denoted by ,

, and . These probability measures and corre-
sponding PDFs satisfy the following relationships:

(13)

(14)

(15)

It follows from these relationships that

(16)

(17)
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Fig. 1. Relationships among true and biased probability density functions for
� given � � � � �.

Fig. 1 illustrates relationships (16) and (17) for a particular con-
figuration of biases.

Using the above relationships, the effects of the constant shift
factors and on the expectation and CVaR for can be
derived. These derivations are summarized in the following key
theorem, proved in Appendix A.

Theorem 1: Given any confidence level , the ex-
pectation and measure for under the true probability
measure and the biased probability measures and sat-
isfy the following relationships:

(18)

(19)

(20)

(21)

III. NASH BARGAINING THEORY APPROACH

Section III-A reviews Nash bargaining theory in general
terms. The theory is then applied in Section III-B to the finan-
cial bilateral contract negotiation set out in Section II.

A. Nash Bargaining Theory: General Formulation

Consider two utility-seeking players attempting to agree on a
settlement point in a compact convex utility possi-
bility set . If the two players fail to reach an agreement,
the default outcome is a threat point satisfying

and

(22)

Let the set of all bargaining problems satisfying the above
assumptions be denoted by . For each , define the
barter set as follows:

(23)

Nash [30] defined a bargaining solution to be any function
: that assigns a unique outcome for

every bargaining problem . Nash characterized four
axioms considered to be essential for any fair and efficient bar-
gaining process: invariance under positive linear affine transfor-
mations; symmetry; independence of irrelevant alternatives; and

Pareto efficiency; see [31] for details. He then proved that there
is a unique bargaining solution that satisfies these four axioms.
Specifically, for any given bargaining problem satis-
fying these four axioms, Nash’s bargaining solution

is the unique solution to the following
problem: maximize with respect to the choice
of . Hereafter the function will be re-
ferred to as the Nash bargaining solution.

B. Application of Nash Bargaining Theory to the Contract
Negotiation Problem for GenCo G and LSE L

Consider once again the financial bilateral contract problem
set out in Section II. GenCo G and LSE L are engaged in a ne-
gotiation for a contract-for-difference at their common location,
bus .

Suppose G and L use Nash bargaining theory in an attempt
to negotiate the contract amount and strike price for this
CFD. Assume the threat point is given by the utility levels
expected to be attained by G and L if no contract is signed:

(24)

(25)

Suppose, also, that the feasible negotiation ranges for and
are nonempty closed intervals: , and

.4

The utility possibility set for G and L’s CFD bargaining
problem is then given by the set of all possible utility outcomes
(6) and (10) for G and L as and vary over their feasible
negotiation ranges. The barter set for this bargaining problem

takes the form :
. Finally, the Nash bargaining solution for this CFD bar-

gaining problem is calculated as follows:

(26)

The following key theorem, proved in Appendix B, estab-
lishes that the barter set for this CFD bargaining problem is
always convex even though the utility possibility set can fail
to be convex.

Theorem 2: Suppose the previously given restrictions on the
CFD bargaining problem for G and L all hold. Suppose, also,
that the lowest possible strike price is less than as de-
fined in (27), the highest possible strike price is greater than

as defined in (28), and . Then the Nash
barter set for the CFD bargaining problem for G and L is
a non-empty, compact, convex subset of . Specifically, the
barter set is a compact right triangle when conditions (29)
and (30) both hold (cf. Fig. 2); the barter set reduces to the
no-contract threat point when inequality (30) does not hold (cf.

4The reason why we include consideration of contract amounts � greater
than the GenCo’s fixed generation level � is that the LSE might have a much
larger amount of load to serve than � . In this case, if the LSE is extremely risk
averse, it might be willing to pay a significant “risk premium” to the GenCo to
sign a CFD contract in an amount greater than � in order to hedge its risk.
The GenCo might be willing to sign the CFD because its expected net earnings
outweigh the price risk associated with its short sale.
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Fig. 2. Illustration of the utility possibility set � and barter set � for GenCo
G and LSE L when (29) and (30) both hold. The barter set is a right triangle.

Fig. 3. Illustration of the utility possibility set � and barter set � for GenCo
G and LSE L when (30) fails to hold. The barter set reduces to the non-contract
threat point.

Fig. 4. Illustration of the utility possibility set � and barter set � for GenCo
G and LSE L when (29) does not hold but (30) holds. The barter set is a right
triangle.

Fig. 3); and the barter set is a compact right triangle when
(29) does not hold but (30) holds (cf. Fig. 4):

(27)

(28)

Fig. 5. Five-bus test case used for computational experiments.

(29)

(30)

IV. SIMULATION RESULTS

A. Five-Bus Test Case and Experimental Design

This section reports on computational CFD bargaining exper-
iments conducted using a modified version of the benchmark
five-bus test case presented in [32]. As depicted in Fig. 5, the
key changes are the addition of GenCo G6 at Bus 3 that owns
and operates a power plant at Bus 3, and a more detailed mod-
eling of LSE 2 at Bus 3.

More precisely, G6 is assumed to have the characteris-
tics of the profit-seeking risk-averse GenCo G described in
Section II-B, and LSE 2 is assumed to have the characteristics of
the profit-seeking risk-averse LSE L described in Section II-C.
To hedge their price risk at Bus 3, G6 and LSE 2 enter into a
negotiation process for a CFD. As in Section III-B, this CFD
negotiation process is modeled as a Nash bargaining problem,
and outcomes are obtained via a Nash bargaining solution as
in (26).

The two types of experiments reported below examine how
the outcomes of this CFD bargaining problem are affected by
systematic variations in structural conditions. The first set of
experiments investigates the effects of absolute and relative
changes in the risk-aversion factors and for G6 and
LSE 2, assuming zero price bias. The second set of experiments
investigates the effects of absolute and relative changes in the
price bias factors and affecting the estimates formed
by G6 and LSE 2 for , the sum of LMPs at Bus 3 during the
CFD contract period, conditional on particular risk aversion
settings. For simplicity, these price bias factors are assumed to
be proportional to .
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TABLE I
DAILY AVERAGE LOAD FOR THE FIVE-BUS TEST CASE

DURING THE CONTRACT MONTH (“JUNE”)

TABLE II
AUTOCORRELATION FUNCTION FOR DAILY AVERAGE LOAD

FOR THE FIVE-BUS TEST CASE DURING THE CONTRACT MONTH (“JUNE”)

As in Section II-B, G6’s power plant is assumed to have a
quadratic total variable cost (TVC) function given by (1). The
parameters characterizing this TVC function are set as follows:

and . G6’s fixed production rate is set
at 300 MW. The regulated retail resale rate for LSE 2 is set at
$25/MWh. Also, the confidence level for all CVaR evaluations
for both GenCo G6 and LSE 2 is set at 0.95. All line capacities,
reactances, and cost and capacity data for GenCos G1 through
G5 are set as in the benchmark five-bus test case from [32].

The CFD contract period for G6 and LSE 2 is assumed to be
one month, “June.” The “true” daily average load during this
month was generated via a truncated multivariate normal distri-
bution. To make the case study more realistic, the parameters
for the mean vector and covariance matrix for this distribution
were estimated from MISO load data for June 2006 [33]. The
daily average load and load autocorrelation function used for
sample generation are provided in Tables I and II. The variance
of the daily average load was set at . The hourly
load was approximated by multiplying the daily total load by an
hourly load weight factor equal to the load weight factor for the
historical data.

Using the above modeling for hourly loads, 1000 sample
paths were generated for hourly DC-OPF dispatch and LMP
solutions for the day-ahead energy market over the contract
month. To reduce the sample space and corresponding sample
generation time and number of runs necessary for Monte Carlo
simulation, recourse was made to Latin hypercube sampling,
an efficient stratified sampling technique [34].

Given each experimental treatment, i.e., each setting for
, these 1000 sample paths were used to

formulate the return-risk utility functions (6) and (10) for G6

TABLE III
EFFECTS OF RISK-AVERSION FACTORS ON THE CONTRACT AMOUNT �

AND STRIKE PRICE � DETERMINED THROUGH NASH BARGAINING

and LSE 2 as functions of the contract amount and strike
price . The feasible negotiation ranges for and were set
as follows:5 , and . The unique Nash
bargaining outcomes for and were then determined.

B. Findings

1) Risk-Aversion Treatment: This section examines the ef-
fects of changes in the risk-aversion factors and as-
suming zero price bias .

Table III reports the Nash bargaining outcomes for the con-
tract amount and strike price as and are system-
atically varied from 0.5 to 2.0. Moving from top to bottom in
each column of Table III, the negotiated strike price system-
atically decreases as G6’s risk-aversion factor is increased,
holding fixed the risk-aversion factor for LSE 2. Conversely,
moving from left to right in each row, the negotiated strike price

systematically increases as LSE 2’s risk-aversion factor
is increased, holding fixed the risk-aversion factor for G6.
In summary, all else equal, as each trader becomes more risk
averse the negotiated strike price moves in a direction that fa-
vors the other trader.

For sufficiently close to (the setting for
used in all simulation runs), it follows from Lemma 4 that the
net earnings of LSE 2 decrease with increases in the contract
amount whereas the net earnings of G6 increase with in-
creases in . This implies that LSE 2 will prefer a smaller
and G6 a larger as increases, all else equal. However, it is
then unclear which way the actual negotiated contract amount

will move as the negotiated strike price increases.
The findings in Table III reveal that, for each given risk aver-

sion level for G6, a higher risk aversion level for LSE 2
results not only in a higher but also in an that is either un-
changed or lower. Conversely, for each given risk aversion level

for LSE 2, a lower risk aversion level for G6 results not
only in a higher but also in an that is either unchanged or
lower. In short, and tend to move inversely in Table III.

Another interesting regularity is observed in the diagonal el-
ements of Table III. When LSE 2 and G6 have the same level of
risk aversion, a lock-step change in risk aversion for both LSE
2 and G6 results in no change in the negotiated value for . On
the other hand, from the off-diagonal elements (0.5,1) and (1,2)
of Table III, it is seen that the negotiated outcomes for and

can depend on the absolute levels of risk aversion for LSE 2
and G6; it is not only the relative levels that matter.

5As required by Theorem 2, it can be shown that the setting � � �� is
smaller than � in (27) and the setting � � �� is greater than � in (28)
for each tested configuration for �� �� �� �� �.
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Fig. 6. GenCo net earnings histogram given a fixed GenCo risk-aversion factor
� � � and varying values for the LSE risk-aversion factor � .

Fig. 7. LSE net earnings histogram given a fixed GenCo risk-aversion factor
� � � and varying values for the LSE risk-aversion factor � .

Finally, the reason why several combinations of and
in Table III result in the same contract amount 300 MW is that
GenCo G6 is fully hedged with a 300 MW contract because its
(fixed) production rate is set at 300 MW. Therefore, when G6
is at least as risk averse as LSE 2, it is not surprising to see the
contract amount settle at 300 MW.

Figs. 6 and 7 display the effects of changes in the risk-aver-
sion factor for LSE 2 on the post-contract net earnings his-
tograms for G6 and LSE 2, respectively, assuming the risk-aver-
sion factor for G6 is fixed at 1.0. As LSE 2 becomes more
risk averse, its net earnings histogram shifts to the left, an un-
favorable shift for LSE 2. On the other hand, the net earnings
histogram for G6 shifts to the right, a favorable shift for G6.
These net earnings findings provide additional support for the
conclusion previously drawn from the more aggregated findings
reported in Table III: namely, an increase in risk aversion for one
party to the CFD bargaining process, all else equal, results in a
worse outcome for this party and a more favorable outcome for
the other party.

2) LMP Bias Treatment: Experiments were conducted to de-
termine the effects of changes in the price bias factors and

for each risk-aversion treatment in Table III. It
follows from Theorem 1 in Section II-D that a higher value for

(or ) implies G6 (or LSE 2) expects higher LMP out-
comes. Due to space limitations, only the price bias results for

are reported below.6

Table IV reports Nash bargaining outcomes for the contract
amount and strike price as the price bias factors
and are each systematically varied from to

6The price bias results for the other risk-aversion treatments are qualitatively
similar.

TABLE IV
EFFECTS OF BIASES IN LMP ESTIMATES ON THE CONTRACT AMOUNT �

AND STRIKE PRICE � DETERMINED THROUGH NASH BARGAINING

Fig. 8. No-contract boundaries and regions under three combinations of risk-
aversion factor.

. The no-bias case and provides a
useful benchmark of comparison. Relative to this benchmark, if
LSE 2 underestimates , then the strike price decreases; and
if LSE overestimates , then increases. Conversely, relative
to this benchmark, if G6 underestimates , then decreases;
and if G6 overestimates , then increases. Also, moving
from the lower-left to the upper-right cell of Table IV—that is,
letting increase and decrease together—the contract
amount is seen to either remain the same or decrease.

Moreover, for each given price bias level for one negotiation
participant (either G6 or LSE 2), increases with increases in the
price bias of the other participant. As noted above, LSE 2 will
prefer a smaller and G6 a larger as increases, all else
equal. However, it is then unclear which way the negotiated con-
tract amount would move if the negotiated strike price in-
creases due to some change in price bias. Interestingly, Table IV
reveals that is always either unchanged or lower when in-
creases due to an increase in the price bias of G6 conditional on a
given price bias for LSE 2. Conversely, is always either un-
changed or higher when increases due to an increase in the
price bias of LSE 2 conditional on a given price bias for G6.

Additional simulations were also conducted to search for
combinations of the normalized price-bias factors
and such that the negotiated contract amount

was zero, implying a no-contract outcome. These no-con-
tract regions are depicted in Fig. 8 for three alternative
specifications for the risk-aversion factors. As seen, for each
risk-aversion case, the boundary of the no-contract region
in the plane is a line, and the
no-contract region is the half-plane bounded below by this
no-contract line. An important observation from Fig. 8 is that
the no-contract region shrinks in size as the traders become
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more risk averse and hence more anxious to successfully agree
on a contract.

V. CONCLUSION

This study analyzes Nash bargaining settlement outcomes for
a CFD negotiation between a GenCo and an LSE facing price
risk from uncertain LMP outcomes at a common bus location.
Using both analysis and computational experiments, it is shown
that differing levels of risk aversion and biases in LMP estima-
tions have systematic effects on the negotiated contract amount
and strike price, hence also on the post-contract net earnings dis-
tributions for the GenCo and LSE. In addition, circumstances
in which the two parties can fail to reach an agreement are
identified.

Future studies will consider more general contract negotia-
tion problems involving both financial and physical energy con-
tracts between wholesale power market traders located at pos-
sibly different buses. In this case, full hedging of price risk can
require traders to combine CFDs with additional instruments,
such as financial transmission rights, to take into account LMP
separation across buses due to transmission congestion. Another
important topic for future studies is the extension of the current
model to handle multilateral contract negotiation problems to
better capture medium-term contracting opportunities.

APPENDIX A
PROOF OF THEOREM 1 IN SECTION II-D

The proof of Theorem 1 follows directly from Propositions
1–3, below. For expositional simplicity, the assumptions of The-
orem 1 are not repeated in the statement of each proposition but
are instead tacitly assumed to hold.

Proposition 1: The expected values for derived under
the three probability measures , , and satisfy (18) and
(20).

Proof of Proposition 1: The expected value of derived
under (with pdf ) is given by

(31)

Introducing the change of variables

(32)

It can similarly be shown that .
Proposition 2: The VaR values for derived under ,

, and satisfy

(33)

(34)

Proof of Proposition 2: and are
defined as follows:

(35)

(36)

It follows from the definition of that

(37)

Introducing the change of variables

(38)

It can similarly be shown that .

Proposition 3: The CVaR values for derived under ,
, and satisfy (19) and (21).
Proof of Proposition 3: Let denote any real-valued

random variable measurable with respect to a probability space
. Let , and let denote the measurable

subset of points such that , which
implies (by definition of VaR) that . Then

is defined as follows:

(39)

Recall that is the pdf corresponding to the probability mea-
sure . It follows that

(40)
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Introducing the change of variables

(41)

It can similarly be shown that
.

APPENDIX B
PROOF OF THEOREM 2 IN SECTION III-B

This section provides a proof for Theorem 2 making use of
four lemmas. For expositional simplicity, the assumptions of
Theorem 2 are not repeated in the statement of each lemma but
are instead tacitly assumed to hold. Also, throughout this ap-
pendix, the subscripts on all VaR and CVaR expressions are
omitted, as are the -superscripts for all expectations, VaR, and
CVaR expressions calculated using the true probability measure

.
Lemma 1: is convex in for any

.
Proof of Lemma 1: Let be given. To prove

that is convex in , we need to show
that, for arbitrary , , and , the following in-
equality holds:

(42)

Using the convexity of CVaR, we have

(43)

Lemma 2: Given any contract amount ,
varying the strike price from to maps under (6) and
(10) into a straight line in with slope .

Proof of Lemma 2: Using (5) and (9), we have

(44)

(45)

Taking expectations on each side of (44) and (45)

(46)

(47)

It follows immediately from the definition of CVaR that CVaR
is translation-equivariant, i.e., .
Thus

(48)

Rearranging the terms in the above equation, we have

(49)

Similarly, we have

(50)

The utility functions for GenCo G and LSE L are defined in
(6) and (10). Using these definitions, together with relationships
(46), (47), (49), and (50), we have

(51)

and

(52)

It follows that

(53)

(54)

Integrating both sides of (53) and (54) with respect to S, we have

(55)

(56)

Multiply (55) and (56) by and , respectively,
and add the resulting expressions. After rearranging terms

(57)

Totally differentiating this expression, it follows that

(58)

To better understand the proof of the next lemma, the reader
might wish to view Figs. 10–12 used below for the main proof
of Theorem 2.
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Lemma 3: If the strike price is fixed at its lowest possible
level , then the locus of points traced out in the
utility possibility set under (6) and (10) as the contract amount

varies from to determines a concave curve in .
Conversely, if the strike price is fixed at its highest possible
level , then the locus of points traced out in under
(6) and (10) as M varies from to determines a concave
curve in .

Proof of Lemma 3: Suppose the strike price is fixed at
its lowest possible level . Using (5)

(59)

Similarly

(60)

The rest of the proof for will be presented under two
conditions that cover all possibilities.

Condition 1:

(61)

Therefore, we have

(62)

Now

(63)

Next calculate the right derivative of with respect to :

(64)

Integrating both sides of the above equation and rearranging the
terms, we have

(65)

From (65), can be viewed as a function of . We can thus
calculate the derivative of with respect to as follows:

(66)

Taking the derivative of each side of (66) with respect to , we
have

(67)

Taking the expectation and then the derivative with respect to
on each side of (7), we get

(68)

Then obviously, we have

(69)

Now (67) can be reduced to the following:

(70)

As shown in Lemma 1, is convex in M.
Consequently

(71)

It follows that

(72)

Therefore, given Condition 1, the curve of points
traced out in space as varies from to is concave.

Condition 2:

(73)
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Therefore, we have

(74)

Now

(75)

Next calculate the left derivative of with respect to :

(76)

Integrating both sides of the above equation and rearranging the
terms, we have

(77)

Similar to the derivation in Condition 1, the second derivative
of with respect to can be calculated as

(78)

Given the inequality relationship in (71), we have

(79)

Therefore, given Condition 2, the curve of points
traced out in space as varies from to is once
again concave.

In summary, when the strike price is fixed at the lowest
possible level, , it has been shown that the contract amount
interval from to and the contract amount interval from

to each map under (6) and (10) into a concave curve
in the utility possibility set traced out by in as
varies from to and from to , respectively. It
remains to show that the entire curve traced out by
in as varies from to is concave in .

It follows easily from previous results above that is
a continuous function of at the meeting point .
Therefore, to prove the concavity of in , it suffices to show
that the following inequality holds at the meeting point

:

(80)

As will be established formally in Lemma 4 below, when the
contract strike price is fixed at , the GenCo’s utility level

decreases as the contract amount increases, i.e., and
move in opposite directions. Consequently, the left (right)

derivative of with respect in (80) can be reexpressed in
terms of right (left) derivatives with respect to .

Specifically, making use of (66)

(81)

Similarly, making use of (77)

(82)

Using the definition of and from (65) and (77), we have

(83)

Since
, we have . Similarly, since

,
we have . Therefore, together with (83), we have

.
From (68), we have

(84)

From the definition of left and right derivative, we have

(85)
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and

(86)

Using the convexity of CVaR, we have

(87)

Moving the terms around in the above inequality, we have

(88)

Combining, (88), (85), and (86), we have

(89)

Therefore, from (81) and (82), and that if , as
increase, increases, we have

(90)

Combining (90) with (81), (82), and the previously derived con-
dition , one obtains the desired condition
(80).

The proof of the second statement in Lemma 3 pertaining to
the case in which the strike price is fixed at its highest possible
level is entirely analogous to the proof above for the first
statement in Lemma 3.

Before moving onto Lemma 4, additional derivations are pro-
vided with regard to , which will be used in the following
lemma.

As is well known, is convex in the following sense:
For arbitrary (possibly dependent) random variables , ,
and with ,

. Hence, we have

(91)

Rearranging the terms in the above equation, we have

(92)

Hence, can be derived as

(93)

Similar to inequality (91), we have

(94)

Rearranging the terms in the above equation, we have

(95)

Hence, can be derived as

(96)

Lemma 4: If is less than as defined in (27), then
with the strike price S fixed at , as the contract amount M in-
creases, decreases and increases. If is greater than

as defined in (28), then with the strike price S fixed at
, as the contract amount M increases, increases and

decreases.
Proof of Lemma 4:

Part 1: Proof that if is less than as defined in (27),
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then with the strike price fixed at , as the contract amount
M increases,, decreases and increases.

As shown in (93), . As given
in (92), . Hence, we have

(97)

After substituting and into the above equation, we see
that inequality (97) is equivalent to

(98)

Since is less than
, and

, it can be shown that the right-hand side of the above
inequality is greater than 0. Therefore, with the strike price
fixed at , as the contract amount increases, increases.

The rest of the proof will be presented under two conditions
that cover all possibilities.

Condition 1:
As shown in (65), . Since

, and
, . Hence, given Condition 1, with the strike

price fixed at , when increases, decreases.
Condition 2:

As shown in (77), . Since
, and

, . Hence, given Condition 2, with the strike
price fixed at , when increases, decreases.

Part 2: Proof that if is greater than as defined in
(28), then with the strike price fixed at , as the contract
amount increases, increases and decreases.

As shown in (96), . As given
in (95), . Hence, we have

(99)

After substituting and into the above equation, we
see that inequality (99) is equivalent to

(100)

Since is greater than
, and

, it can be shown that the right-hand side of the above
inequality is smaller than 0. Therefore, with the strike price
fixed at , as the contract amount increases, decreases.

The rest of the proof will be presented under two conditions
that cover all possibilities.

Condition 1:
As shown in (65), . Since

,
and , . Hence, given Condition 1, with the
strike price fixed at , when increases, increases.

Condition 2:
As shown in (77), . Since

, and

, . Hence, given Condition 2, with the strike
price fixed at , when increases, increases.

Lemma 5: Consider the following two conditions:

(101)

(102)

Inequality (101) is equivalent to inequality (30), and inequality
(102) is equivalent to inequality (29).

Proof of Lemma 5: Part 1: Proof that inequality (101) is
equivalent to inequality (30)

Inequality (101) implies . Similar to (106), we now
have

(103)

After substituting into the above equation, we see that in-
equality (101) is equivalent to

(104)

Rearranging the terms in the above equation, we have

(105)

Part 2: Proof that inequality (102) is equivalent to in-
equality (29)

Inequality (102) implies . Substituting (68) into
(66), we have

(106)

After substituting into the above equation, we see that in-
equality (102) is equivalent to

(107)
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Rearranging the terms in the above equation, we have

(108)

Theorem 2: Suppose the stated restrictions on the CFD
bargaining problem hold for G and L. Suppose, also, that the
lowest strike price is less than as defined in (27), the
highest strike price is greater than as defined in (28),
and . Then the Nash barter set for this problem
is a non-empty, compact, convex subset of , as follows:

Case 1) The barter set is a compact right triangle when
conditions (29) and (30) both hold, cf. Fig. 2.
Case 2) The barter set reduces to the no-contract threat
point when inequality (30) does not hold, cf. Fig. 3.
Case 3) The barter set is a compact right triangle when
(29) does not hold but (30) holds, cf. Fig. 4.

Proof of Theorem 2: Before considering the shape of the
utility possibility set , first consider the following two curves.
The first curve is the locus of points traced out in

as M varies from to , given a strike price .
The second curve is the locus of points traced out
in as M varies from to , given a strike price .

As seen in Lemma 3, the curves and are concave in .
Moreover, as proved in Lemma 4, with the strike price fixed at

, as increases, decreases and increases. Similarly,
if the strike price is fixed at , as increases, increases
and decreases. Therefore, at each point along and ,
the slope is negative. Note, as proved in Lemma 2, given any
contract amount , varying the strike price
from to maps under (6) and (10) into a straight line in
with slope . Hence, connecting the points
on and that have the same contract amount , we have
straight lines with a slope of . In addition,
every single point on these straight lines belongs to .

The proof of Theorem 2 will be divided into three parts cor-
responding to the three possible cases in the statement of the
theorem.

Case 1) When following the proof below, please refer to
Fig. 10. As shown in Lemma 5, when conditions (101) and
(102) both hold, the slope of at the threat point is smaller
than ; and, when , the slope
of is greater than . Therefore, since

is concave, the slope of must steadily increase from
below to over as

increases from 0 to , and correspondingly decreases.
As indicated in Lemma 3, is also concave. More-

over, the slope of at the threat point is larger than
. This statement can be proved by

contradiction. Assume that, when the slope of at the threat
point is smaller than , the slope of
at the threat point is also smaller than .

Fig. 9. Supporting graph for proving that the slope of � at the threat point is
larger than ��� �� ���� �� � when the slope of � at the threat point is
smaller than ��� �� ���� �� �.

Fig. 10. Illustration of the Case 1 utility possibility set � and barter set � for
GenCo G and LSE L. The barter set is a right triangle.

This situation is plotted in Fig. 9. Pick a point on above
the straight line with a slope of which
passes the threat point. By construction, takes the form

. According to Lemma 2,
the point on together with
must be on a straight line with a slope of .
Therefore, the point on must be
above the straight line with a slope of that
passes through the threat point. However, since the initial slope
of is smaller than , and is concave,
no point on is above this straight line. This contradicts
Lemma 2, which completes the proof.

As proved in Lemma 2, all the points that belong to the utility
possibility set are on parallel lines with one end on and
with a slope of . Hence, the typical utility
possibility set for Case 1 is as shown in Fig. 10.

Since the slope of gradually increases from below
to above ,

there exists a contract amount such that
and

at and . Using the re-
sults proved in Lemma 2,
and will then also hold at

and .
Define and

. Also define
. Since is concave,

it follows from the initial slope and end slope that all the points
on satisfy .

As proved in Lemma 2, all the points that belongs to
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Fig. 11. Illustration of the Case 2 utility possibility set � and barter set � for
GenCo G and LSE L. The barter set reduces to the non-contract threat point.

are on parallel lines with one end on and with a slope
of . Hence, all the points in except
the points on the straight line between and satisfy

.
Now draw a horizontal line and a vertical line from the threat

point. As shown in Fig. 10, let denote the point where the
vertical line intersects with the straight line between and ,
and let denote the point where the horizontal line intersects
with the straight line between and . By definition, the right
triangle constitutes the Case-1 barter set, which is clearly
non-empty, compact, and convex.

Case 2) When following the proof below, please refer
to Fig. 11. Define . As
shown in Lemma 5, when condition (101) fails to hold,

.
Because V1 is concave, all the points on satisfy

. As proved in Lemma 2, all the
points that belong to the utility possibility set are on parallel
lines with one end on and with a slope of

. Hence, all the points in the utility possibility set satisfy
.

Therefore, the threat point is the only point in the utility pos-
sibility set that satisfies both and . This
can be proved by contradiction. Suppose there is another point

in apart from the threat point that satisfies both
and . Then, .

This contradicts our previous conclusion that all points in sat-
isfy . It follows that the Case-2
barter set reduces to the threat point. The typical shapes of the
utility possibility set and the barter set for Case 2 are thus
as shown in Fig. 11.

Case 3) When following the proof below, please refer to
Fig. 12. Let = denote the end-
point of the curve . As shown in Lemma 5, when condition
(101) holds but condition (102) fails to hold, the slope of at
the threat point is smaller than and the
slope of at is also smaller than .

Again, as shown in Lemma 2, all the points that belongs to
are on parallel lines with one end on and a slope of

. Since is concave, the typical Case-3 shape of
is as shown in Fig. 12.
Let denote the

point on curve corresponding to . Let =
. Given the above

findings for the endpoints of , together with the concavity

Fig. 12. Illustration of the Case 3 utility possibility set � and barter set � for
GenCo G and LSE L. The barter set is a right triangle.

of , it follows that all the points on satisfy
. Again, as proved in Lemma

2, all the points that belong to lie on parallel lines with one
end on and with a slope of . Hence, all
the points in satisfy .

Now draw a horizontal line and a vertical line from the threat
point. Let the point where the vertical line intersects with the
straight line between and be denoted by , and let the
point where the horizontal line intersects with the straight line
between and be denoted by . As shown in Fig. 12, the
right triangle constitutes the Case-3 barter set by defini-
tion. Clearly is non-empty, compact, and convex.
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