
Phase Identification in Electric Power Distribution
Systems by Clustering of Smart Meter Data

Wenyu Wang, Nanpeng Yu, Brandon Foggo
Department of Electrical and

Computer Engineering
University of California, Riverside

Riverside, California 92521
Email: wwang032@ucr.edu, nyu@ece.ucr.edu, bfogg@ucr.edu

Joshua Davis
Advanced Technology Labs
Southern California Edison

Westminster, California 92683
Email: joshua.davis@sce.com

Abstract—Accurate network and phase connectivity models are
crucial to distribution system analytics, operations and planning.
Although network connectivity information is mostly reliable,
phase connectivity data is typically missing or erroneous. In this
paper, an innovative phase identification algorithm is developed
by clustering of voltage time series gathered from smart meters.
The feature-based clustering approach is adopted where principal
component analysis is first carried out to extract feature vectors
from the raw time series. A constrained k-means clustering
algorithm is then executed to separate customers/smart meters
into various phase connectivity groups. The algorithm is applied
on a real distribution feeder in Southern California Edison’s
service territory. The accuracy of the proposed algorithm is over
90%.

Keywords—data mining, k-means clustering, phase identifica-
tion, principal component analysis, smart meter.

I. INTRODUCTION

Driven by stricter environmental regulations, technological
advances, and business model innovations, distributed energy
resources (DERs) are being deployed in the electric power
distribution systems at an unprecedented pace. According to
a technical report from Navigant Research [1], the annual
installed capacity across the global DER market is expected
to grow from 136.4 GW in 2015 to 530.7 GW in 2024.

To fully exploit the benefits of the DERs, the distribution
network must be actively managed. To operate the distribution
system in an efficient and reliable manner, the distribution sys-
tem operators typically rely on a set of tools and applications
including three-phase power flow, distribution system state es-
timation, three-phase optimal power flow, distribution system
restoration and distribution network reconfiguration. All of
these applications require an accurate distribution network and
phase connectivity model. Although the network connectivity
model is mostly accurate, phasing errors are common [2].
Therefore, an accurate phase identification method is in critical
need.

Electric utility companies typically do not have accurate
phase connectivity information. Moreover, the phase connec-
tivity of the distribution network changes over time when
new customers are connected to the system. With more DERs
connected to the power distribution systems, correct phase
connectivity data become increasingly important to efficient

and reliable operations of power distribution systems. This
paper develops an unsupervised machine learning algorithm
to identify the phase connectivity of customers based on
smart meter data and supervisory control and data acquisition
(SCADA) data.

The rest of this paper is organized as follows. Section II
introduces the background, provides a comprehensive litera-
ture review of the existing methods for phase identification,
and clarifies the unique contributions of this paper. Section
III presents the proposed phase identification method by
clustering of smart meter data. In Section IV, a case study on a
Southern California Edison’s distribution feeder is conducted
to validate the proposed algorithm. The conclusions are stated
in Section V.

II. BACKGROUND AND RELATED WORKS

A. Background and Problem Definition

To understand the phase identification problem, we first
briefly introduce the electric power distribution system. The
electric power distribution system is the final portion of
the power delivery infrastructure that carries electricity from
highly interconnected, high-voltage transmission systems to
end-use customers. An illustration of a simple electric dis-
tribution system is depicted in Figure 1. The starting point
of the distribution system is the distribution substation. In
the distribution substation, a step-down transformer lowers the
transmission-level voltage (35 to 230 kV) to a medium-level
voltage (4 to 35 kV) in the primary distribution circuits [3].
The electric power then flows through the primary feeders
and laterals (L1-L5) to distribution transformers (T1-T8),
which further step down the voltage to low-voltage secondary
circuits. The secondary circuits serve end-use customers and
operate at 120/240 V three-wire, 120/208 V three-phase, or
277/480 V three-phase. Laterals can be single-phase (L2), two-
phase, also called “V” phase (L3, L4), or three-phase (L1,
L5).

The majority of the electric power is supplied by three-
phase generators. In balanced conditions, the electric power
circuits are 3-phase circuits and the three voltage phasors,
Van, Vbn, and Vcn, differ only in their angles, with 120-degree
differences between any pair. Residential customers can be



Fig. 1: Illustration of a distribution system. Labels a, b, and c
represent the three phases. L stands for a lateral, T stands for
a transformer, and x denotes a customer.

served by either a 120/240 V three-wire secondary through a
center-tapped transformer (e.g., T3, T4, T7) or a 120 V single-
phase secondary through a single-phase transformer (e.g., T1,
T2, T5, T6). Commercial customers are typically served by
a 208 V or 480 V three-phase four-wire secondary through a
three-phase transformer (e.g., T8).

The phase identification problem is defined as identifying
the phase connectivity of each customer and structure in the
power distribution network.

B. Related Works and Contributions of This Paper

Very few studies on phase identification have been carried
out. The existing methods for solving the phase identification
problem can be separated into two general approaches. In the
first approach, only smart meter data and SCADA information
are assumed to be available [2], [4]–[6]. In the second ap-
proach, special equipments such as micro-synchrophasors [7],
signal generators and discriminators [8] need to be installed to
accurately identify the phase of distribution system customers
and/or structures.

In the first approach, 0-1 integer linear programming and
correlation-based methods are proposed to solve the phase
identification problem. The phase identification problem is
formulated as a 0-1 integer linear programming problem where
the phase connection of smart meters are treated as binary
variables. Tabu search [4] and branch & bound search [5]
are used to solve the integer optimization problem. There are
two drawbacks associated with the 0-1 integer programming

method. The first drawback is its computational complexity.
A typical distribution feeder serves 1000 to 3000 customers
on average. Therefore, the 0-1 integer programming problem
for phase identification has thousands of binary decision
variables, which requires daunting computational time. The
second drawback is its low tolerance for erroneous and missing
measurements. The existing methods only work when there are
no unmetered loads or erroneous load measurements.

In correlation-based methods [2], [6], correlation coeffi-
cients or R2 (coefficient of determination) are calculated
between the voltage profile of individual smart meters and
the voltage profile of the substation on each phase. These
correlation coefficients or R2 are assumed to have the highest
value when the customer’s phase is correctly labeled. Although
correlation-based methods have been shown to be effective in
identifying single-phase customers, it is not clear if the method
can be successfully applied in the distribution circuits where
the majority of the loads are connected to two-phase laterals.
In addition, the algorithm may incorrectly label customers on
the same single-phase secondary differently.

In the second approach, micro-synchrophasors, signal gen-
erators and discriminators are leveraged to accurately identify
the phase of each customer. In [7], micro-synchrophasors are
deployed at the target bus for phase identification. Micro-
synchrophasors can measure voltage phase angles in addition
to voltage magnitude. The main idea behind the method
is that the correct customer phase label should yield the
highest voltage magnitude and phase correlation with the
corresponding phase at the substation. The advantage of the
micro-synchrophasor approach is that the method is applicable
to all types of customer phase connections. In [8], a signal
generator is deployed at the distribution substation and signal
discriminators are deployed at the target customer sites to ac-
curately identify the phases of smart meters. The disadvantage
of the methods in the second approach is the expensive capital
and maintenance costs for the additional equipments.

In this paper, an innovative constrained k-means clustering
algorithm of smart meter data is proposed to solve the phase
identification problem. Instead of directly using the voltage
time series data, we propose to first extract unique features
from the voltage time series of smart meters. Then we define
customer phase constraints by exploiting the known infor-
mation about line configurations in the network connectivity
model. At last, a constrained k-means clustering algorithm is
applied to accurately identify the phase connection of each
customer.

In light of the existing literature, the unique contributions
of this paper are as follows:

1. The proposed phase identification algorithm utilizes the
known information about line configurations in the network
connectivity model to avoid mislabeling of the customers on
the same secondary feeder which can occur in the existing
methods.

2. The proposed phase identification algorithm is com-
putationally efficient compared with the 0-1 integer linear
programming method and the correlation-based methods.



3. The proposed phase identification algorithm can identify
phase connections with high accuracy in distribution circuits
where the majority of loads are connected to two-phase
laterals.

4. The proposed phase identification algorithm can still
determine the phase connections of metered customers when
the distribution circuit has some unmetered customers.

III. PHASE IDENTIFICATION BY CLUSTERING SMART
METER DATA

The framework of our proposed phase identification algo-
rithm by clustering smart meter data is illustrated in Figure
2. In the first step, voltage measurements are collected from
smart meters and the SCADA system. In the second step, we
normalize the customer voltage time series by their standard
deviations and apply principal component analysis (PCA) on
the normalized time series to extract the top q components.
In the third step, we define the constraints in the clustering
process by inspecting the network connectivity data. The
k-means constrained clustering method is then applied to
partition customers into clusters. At last, we identify the phase
of each cluster by solving a minimization problem. The rest of
this section is divided into three parts. First, we briefly review
the methods in clustering of time series data. Second, the k-
means constrained clustering algorithm for smart meter data
is presented. Third, the algorithm for identifying the phase of
each cluster is introduced.

Fig. 2: Diagram of the phase identification procedure.

A. Brief Review of Clustering Time Series Data

The goal of clustering is to identify the structure in an
unlabeled dataset by objectively organizing data into homo-
geneous groups such that the objects in the same group are
more similar to each other than those in different groups [9].
Various algorithms have been developed to cluster time series
data. One of the widely used clustering algorithms is k-means,
in which the objects are divided into k clusters so that the
within-cluster sum of squares is minimized. Though typically
it is not practical to find the minimal sum of squares among
all possible partitions, many algorithms have been proposed
to find local optimal solutions [10].

Almost all clustering algorithms require a similarity or
distance function. There are many different types of distance
functions. We only consider two of them here. The first one is
Euclidean distance. If ai and aj are two p-dimensional time
series, then their Euclidean distance is defined by

dE =

√√√√ p∑
k=1

(aik − ajk)2 (1)

Another type of distance function is related to Pearson’s
correlation coefficient. For two p-dimensional time series ai
and aj , their Pearson’s correlation factor is defined by

cc =

∑p
k=1(aik − µi)(ajk − µj)

sisj
(2)

where µi and µj are the mean values of ai and aj , and si =√∑p
k=1(aik − µi)2 [9]. Then the distance between ai and aj

can be defined based on cc as d1 = 1− cc or d2 = ( 1−cc1+cc )
β ,

(β > 0) [11].
Smart meter time series data are high-dimensional. It is not

desirable to work with high-dimensional noisy raw data in
practice [9]. Therefore, we adopt a feature-based clustering
method for the phase identification problem. Drawing features
from data often requires expert knowledge of the data, but in
the phase identification problem, little knowledge is known on
what features are important. PCA is a useful tool to reduce
the data dimension and extract key features hidden in the
time series data. PCA transforms a dataset into a new set of
uncorrelated variables called principal components (PCs). PCs
are ordered such that the first component retains the most of
the variation in the original variables, the second component
retains the second most of the variation, and so on [12]. In this
paper, PCA is used to select the most important features of
the voltage time series data by picking the first q components.
Euclidean distance in the chosen principal components’ space
will be used as the distance metric in the subsequent clustering
process.

B. Clustering of Smart Meter Data with Constraints

The intuition behind identifying phase connectivity through
clustering of voltage time series data is that the distribution
system is typically operated in an unbalanced manner. The
unbalanced impedances and electric loads on three phases lead
to unbalanced line currents and voltages [13]. This implies that



the trajectory of voltage time series of customers with the same
phase connectivity will have more similar behavior than those
with different phase connectivity. As mentioned in Section
III-A, instead of working directly with the raw voltage data,
a feature-based clustering approach is adopted with features
extracted from the voltage time series by PCA. Preprocessing
including normalization and centering of the raw voltage data
is conducted before applying PCA. We will show in the case
study in Section IV that a small number of features can yield
very accurate clustering results.

The goal of clustering the voltage data from smart meters is
to identify distinct groups of customers such that all customers
in the same group have the same phase connectivity. Using the
distribution feeder shown in Figure 1 as an example, customers
x7, x8, x9, x10, x15, and x16 are all connected to phase BC
through a three-wire system (120/240 V) and they should be
clustered into the same group. Similarly, consumers x1, x2,
x3, and x4 should also be in one cluster because they are
all connected to phase A and have the same voltage level
(120 V). Before applying the clustering algorithm, we first
separate customers based on their service voltage levels (120
V, 120/240 V, 208 V, 277 V, 480 V). These voltage levels can
be easily identified by inspecting the voltage magnitude data
from smart meters. The algorithm proposed in this paper aims
at clustering customers of the same voltage level. For example,
meters of 120/240 V three-wire service have 6 possible phase
connections: AB, BC, CA, AN , BN , and CN ; meters of
120 V single phase service have 3 possible phase connections:
AN , BN , and CN .

Various studies have been carried out to improve clus-
tering/learning performances by utilizing constraints from
background knowledge [14]–[17]. In [14], two kinds of hard
constraints are introduced: must-link constraints and cannot-
link constraints. Must-link constraints specify that two data
points have to be in the same cluster; cannot-link constraints
specify that two data points cannot be in the same cluster.
The constraints for the phase identification problem can be
formed based on the network connectivity information, which
is typically available for power distribution systems. The net-
work connectivity information includes line segment config-
urations and the connectivity between customers, distribution
transformers, laterals, and primary feeders. If two customers
are connected to the same secondary laterals and have the
same voltage level, then they must have the same phase
connectivity and should be linked together in the clustering
process. For example, in Figure 1, customers x7, x8, x9, and
x10 are all connected to the same lateral L3, and receive power
through a three-wire (120/240 V) configuration. Therefore,
these customers should be grouped into the same cluster.
However, customers x7 and x15 should not be linked to each
other because they are connected to different laterals.

A scheme is introduced in [15] for constrained k-means
clustering. It is similar to the standard k-means clustering
algorithm except that in the constrained clustering algorithm,
each data point is assigned to the closest cluster such that
it does not violate the constraints. The phase identification

problem has must-link constraints where certain data points
must be in the same cluster. We first put customers on the same
laterals into a subset. Then an augmented k-means clustering
algorithm is performed to the subsets themselves to obtain
the full partition. Let D = D1

⋃
D2

⋃
...

⋃
Dn be the whole

dataset, and D1, ..., Dn are the subsets in which every data
point is linked together by the constraints. If a data point is
not linked to any other data point, then it forms a subset
in D itself. The constrained k-means clustering algorithm
for phase identification is described in Algorithm 1, which
is a modification of the scheme in [15]. As mentioned in
Section III-A, it is difficult to find the optimal result(s) by
k-means clustering. To get a relatively good clustering result
in our approach, the clustering algorithm is performed multiple
times with different sets of random initial cluster centers. The
clustering result with the smallest sum of squared distances is
selected in the end.

Algorithm 1 Constrained k-means clustering algorithm

1: procedure CON-K-MEANS(D = D1

⋃
D2

⋃
...
⋃
Dn)

2: Choose data points randomly from D as the initial
cluster centers C1, ..., Ck.

3: Calculate each subset Di’s distance to each cluster.
The distance is defined as the sum of squared distances
of all the data points in Di with the cluster center.

4: Assign each subset to the cluster that has the minimum
summed distance.

5: For each cluster Ci, update its center by averaging all
the data points that have been assigned to it.

6: Iterate between (3) and (5) until convergence.
7: return {C1, ..., Ck}.
8: end procedure

C. Identify the Phase Connectivity of Each Cluster

Once the customers are clustered as described in Section
III-B, the next and last step is to identify the phase connectivity
of each cluster. Since the customers in the same cluster should
have the same phase connection, we can identify the phase of
each cluster by picking a small number of customers from that
cluster and identify their phase connectivity. This is a huge
workload reduction compared with performing phase identifi-
cation algorithms on every single customer. One may identify
the phase of these few customers by micro-synchrophasors,
signal generators and discriminators as in [7], [8].

However, to further reduce the computational workload, and
to save the expense of equipments used in [7], [8], we can
identify the phase of each cluster by a one-to-one matching
between the set of clusters and the set of possible phase
connections. The one-to-one matching can be found by solving
the following minimization problem. Suppose there are k
clusters to be identified with centers C1, ..., Ck, and there are k
substation voltage time series on the k possible phases. The k
substation voltage series are centered and normalized by their
standard deviations, and then projected onto the chosen prin-
cipal components’ space used for clustering. Let V1, ..., Vk be



the coordinates of the k voltage series in the chosen principal
components’ space, and let f : {C1, ..., Ck} → {V1, ..., Vk}
be an unknown bijection between the cluster set and the
substation voltage set. The solution of the minimization in (3)
is the one-to-one matching for phase identification. The phase
of each cluster’s paired voltage data is the cluster’s identified
phase.

argmin
∀ bijection f :{C1,...,Ck}→{V1,...,Vk}

k∑
i=1

dE(Ci, f(Ci))
2 (3)

Here dE(Ci, f(Ci)) is the Euclidean distance between Ci
and f(Ci). The minimization can be solved by exhaustive
search, because there are only k! possible bijections, where
k is small (e.g., k = 3 at 120/240 V level).

Compared to the load matching approach in [5], which
assumes aggregated electricity consumption of all customers
matches that of the substation, our proposed method is less
sensitive to the presence of unmetered customers.

IV. CASE STUDY: SOUTHERN CALIFORNIA EDISON
DISTRIBUTION FEEDER

In this section, the proposed phase identification method
is validated through a case study of a distribution feeder
in Southern California Edison’s service territory. The results
show that the constrained k-means clustering algorithm yields
highly accurate phase connectivity on a typical distribution
feeder.

A. Description of Datasets and Preprocessing of Data

The distribution feeder used for case study is a 12.47 kV
network with a peak load of about 5.2 MW. The feeder serves
about 1500 customers. The majority of the customers are
residential customers.

The raw data collected to test the phase identification
algorithm include: 1) hourly smart meter readings of voltages;
2) feeder line-to-line voltage readings of three phases from the
SCADA system; 3) network connectivity of the distribution
system. The number of a smart meter’s readings varies by
month. In months with 30 days, there are 720 readings (yield-
ing measurement vectors of dimension 720), while months
with 31 days have 744 reading hours. The SCADA system
only records new feeder measurements when the difference
between the new measurement and the previous measurement
exceeds certain threshold. For example, the threshold setting
for the line-to-line voltage is 0.02 kV. At last, to evaluate
the accuracy of the proposed phase identification method, the
correct phase connectivity of each meter is also gathered to
serve as the ground truth.

Since the SCADA readings are recorded at nonuniform
timestamps, linear interpolation is used to create a new set
of voltages that have the same timestamps as the smart meter
readings. All the readings are centered and normalized by
their standard deviations. PCA and k-means clustering are
performed on the readings of the same time period with the
same timestamps. The timestamps are chosen such that most

meters have a complete set of measurements. A smart meter
is removed from the case study if it has missing readings
at the chosen timestamps in the study period. In the testing
distribution feeder, most of the customers are served by a
three-wire system (120/240 V) based on the smart meter
voltage levels, and all of them are connected to phases AB,
BC, or CA. A few customers are served by three-phase
laterals and there is no need to perform phase identification
for these customers. Less than 1% of the customers are served
by two-wire single-phase systems (120 V). Due to the small
number of datasets, they are removed from the clustering
process and their phase connectivity can be identified using
methods introduced in [7], [8].

After preprocessing the test data, about 1500 cus-
tomers/meters need to be clustered into 3 groups: phase
AB, phase BC, and phase CA. PCA is conducted on the
preprocessed time series data. Only the first two principal
components are used to calculate Euclidean distances among
customers. Based on the simulation results, including ad-
ditional principal components does not further improve the
performance of the phase identification results. The phase of
each cluster is identified by finding the bijection described in
Section III-C. In this case, the bijection is between 3 clusters
and the substation voltages of phases AB, BC, and CA.

B. Clustering Results

TABLE I: Clustering Result

Unconstrained Clustering Results of August 2015
Cluster Identified Phase Number of Meters Accuracy Overall Accuracy

1 AB 674 92.58%
2 BC 518 87.64% 87.55%
3 CA 246 73.58%

Constrained Clustering Results of August 2015
Cluster Identified Phase Number of Meters Accuracy Overall Accuracy

1 AB 636 98.27%
2 BC 560 87.68% 90.40%
3 CA 242 76.03%

Unconstrained Clustering Results of September 2015
Cluster Identified Phase Number of Meters Accuracy Overall Accuracy

1 AB 678 93.36%
2 BC 547 93.60% 93.12
3 CA 244 91.39%

Constrained Clustering Results of September 2015
Cluster Identified Phase Number of Meters Accuracy Overall Accuracy

1 AB 645 98.29%
2 BC 559 97.67% 97.28%
3 CA 265 93.96%

Unconstrained Clustering Results of October 2015
Cluster Identified Phase Number of Meters Accuracy Overall Accuracy

1 AB 662 95.02%
2 BC 531 93.60% 93.09%
3 CA 254 87.01%

Constrained Clustering Results of October 2015
Cluster Identified Phase Number of Meters Accuracy Overall Accuracy

1 AB 630 99.84%
2 BC 550 98.36% 97.86%
3 CA 267 92.13%

Three months of SCADA, smart meter, and network con-
nectivity data are collected from August 1, 2015 to October
31, 2015. 1438 smart meters’ data are available in August.
According to the ground truth, 629 of them are connected
to phase AB laterals, 557 of them are connected to phase



Fig. 3: Principal components of August voltage time series
data.

Fig. 4: Principal components of October voltage time series
data.

BC laterals, and 252 of them are connected to phase CA
laterals. In September, 1469 smart meters’ data are available.
According to the ground truth, 638 of them are connected to
phase AB laterals, 571 of them are connected to phase BC
laterals, and 260 of them are connected to phase CA laterals.
In October, 1447 smart meters’ data are available. According
to the ground truth, 633 of them are connected to phase AB
laterals, 562 of them are connected to phase BC laterals, and
252 of them are connected to phase CA laterals.

The clustering and phase identification results are shown
in Table I. These results can be interpreted as follows. The
clustering and phase identification algorithms group the smart
meters into three clusters. The phase identified for each cluster
is listed in the identified phase column. If a meter is assigned
to a cluster whose identified phase is the same as the meter’s
actual phase, then it is assigned to the correct cluster. The
accuracy column shows the percentage of correct assignments
in each cluster and the overall accuracy column shows the

Fig. 5: Phase identification results.

overall accuracy of the phase identification algorithm.
Table I shows that the phase identification algorithm of both

unconstrained and constrained clustering achieve at least 90%
overall accuracy in September and October. In addition, in all
months, the constrained clustering algorithm yields a higher
accuracy than the unconstrained k-means clustering algorithm.
The constrained clustering outperforms the unconstrained clus-
tering by letting must-link constraints pull a linked meter back
to the correct cluster when it is near the boundary of two
clusters.

Figure 3 and 4 show the distributions of two months’
voltage data points in the space of the first two principal
components. Dashed lines are the boundaries of Voronoi cells
associated with cluster centers derived from the constrained
clustering algorithm. Figure 4 also shows an example of how
the constrained clustering algorithm improves the accuracy.
In Figure 4, a set of blue data points grouped by must-link
constraints are connected by solid lines. Although this set of
data points are separated by a boundary, they are closer to the
CA cluster as a whole. Therefore, they are assigned to the



CA cluster, which is the correct phase. Without these must-
link constraints, some of the data points will be assigned to
the BC cluster, which is incorrect. Figure 3 and 4 show that
data points of different phases are separated in the space of
the first two principal components. However, there are more
data points of phase BC and CA overlapped in Figure 3 than
Figure 4. As a result, the overall accuracy of phase BC and
CA are lower when using data from August, compared with
October.

Figure 5 shows the clustering results on the distribution
circuit map based on the smart meter data of October 2015.
In Figure 5, each line is colored according to its actual phase.
Each structure (e.g., transformer) is represented by a small dot.
The three-phase black lines are primary feeder lines. Structures
can be connected to primary feeder lines through a three-wire
(120/240 V) system, so they can be connected to phases of
AB, BC, and CA. A colored rectangle is overlayed on top
of a structure if it is assigned to a wrong cluster. The color of
the rectangular shows the identified phase of the cluster. Note
that the number of structures is smaller than the number of
smart meters/customers as a distribution transformer typically
serves several customers.

The results above show that the constrained k-means clus-
tering algorithm groups the meters by phase at high accuracy,
and the identification method correctly identifies the phase of
each cluster, in a circuit where the majority of customers are
connected to two-phase laterals.

The proposed algorithm is computationally more efficient
than the integer linear programming method. The running time
of the proposed algorithm is the sum of the running time of
the PCA step and the k-means clustering step. The running
time of the PCA is O(p2m + p3) [18], and the running time
of Lloyd’s algorithm for k-means clustering is given by as
O(mkqi). Here p is the number of dimensions of the raw time
series data, m is the number of data points (i.e., the number
of meters), k is the number of clusters, q is the number of
principal components used in clustering, and i is the number
of algorithm iterations. In the case study, the typical value
for i is less than 10. Therefore, the total running time of the
proposed algorithm increases linearly with m. On the other
hand, the running time of branch and bound search, which
solves the integer linear programming problem, is not bounded
by a polynomial function of m [19].

V. CONCLUSIONS AND FUTURE WORK

An innovative distribution system phase identification algo-
rithm using constrained k-means clustering of smart meter data
is proposed in this paper. The proposed algorithm leverages
the network connectivity information to avoid mislabeling of
customers on the same secondary feeder. Utilizing only the
smart meter and SCADA information, the proposed algorithm
is not only computationally efficient but also yields high
accuracy. A real-world distribution feeder is used as a test case
to validate the proposed algorithm. The case study results show
that the constrained k-means clustering algorithm outperforms

the unconstrained algorithm. The overall accuracy of the
proposed algorithm is at least 90%.

Table I shows that this algorithm performs better dur-
ing some months than others. Future research is needed to
determine over which time periods the phase identification
algorithm performs best. In addition, it is desirable to develop
algorithms that not only perform phase identification but also
estimate the confidence level of clustering result for each
individual meter.
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