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Abstract—The three-phase optimal power flow (OPF) problem
has recently attracted a lot of research interests due to the need
to coordinate the operations of large-scale and heterogeneous
distributed energy resources (DERs) in unbalanced electric power
distribution systems. The non-convexity of the three-phase OPF
problem is much stronger than that of the single-phase OPF
problem. Instead of applying the semidefinite programming
relaxation technique, this paper advocates a convex iteration
algorithm to solve the non-convex three-phase OPF problem. To
make the convex iteration algorithm computationally efficient for
large-scale distribution networks, the chordal conversion based
technique is embedded in the convex iteration framework. By
synergistically combining the convex iteration method and the
chordal based conversion technique, the proposed three-phase
OPF algorithm is not only computationally efficient but also
guarantees global optimality when the trace of the regularization
term becomes zero. At last, to further improve the computational
performance, a greedy grid partitioning algorithm is proposed
to decompose a single large matrix representing a distribution
network to many smaller matrices. The simulation results using
standard IEEE test feeders show that the proposed algorithm
is computationally efficient, scalable, and yields global optimal
solutions while resolving the rank conundrum.

Index Terms—Chordal conversion, convex iteration, distribu-
tion system operator, three-phase optimal power flow.

NOMENCLATURE

Ep
k , F

p
k Real part and imaginary part of the voltage

at node k with phase p.
ei Standard basis vector.
gpmik , bpmik Conductance and susceptance between

node i with phase p and node k with phase
m in the line admittance matrix.

Gpm
ik , B

pm
ik Conductance and susceptance between

node i with phase p and node k with phase
m in the admittance matrix.

G The set of nodes with controllable genera-
tions in the power distribution network.

Mp
k Matrix defined for voltage magnitude cal-

culation for node i with phase p.
N The set of all nodes in the power network.
NA Total number of decomposed areas.
ns Number of areas to search for further par-

titions at the current stage.
P p
Dk
, Qp

Dk
Fixed real and reactive load at node k with
phase p.

P p
Gk
, Qp

Gk
Fixed real and reactive power generation at
node k with phase p.

P p
k,inj , Q

p
k,inj Real and reactive power injection at node

k with phase p.
P p

k, P
p

k Lower and upper limit of real power capac-
ity of controllable distributed generation at
node k with phase p.

P pm
ik , Qpm

ik Real and reactive power flow from node i
with phase p to node k with phase m.

Qp

k
, Q

p

k Lower and upper limit of reactive power
capacity of controllable distributed gener-
ation at node k with phase p.

V Nodal voltage vector.
V p
k Voltage at node k with phase p .
V p

k, V
p

k Lower and upper limit of voltage magni-
tude at node k with phase p.

Xext
l Sub-matrix of X associated with nodes in

the l-th extended sub-area.
Xext

l
(r) Sub-matrix of Xext

l associated with nodes
in the l-th extended sub-area intersected
with the r-th extended sub-area.

ypmik Line admittance between node i with phase
p and node k with phase m.

Y Admittance matrix.
Yp

k,Y
p
k Admittance matrices defined for real and

reactive power injection calculation.
Yp

ik,Y
p
ik Admittance matrices defined for real and

reactive power flow calculation.
Yp

k
(l)
,Yp

k

(l)
Admittance matrices defined for real and
reactive power injection calculation associ-
ated with the branches in the l-th extended
area.

Yp
ik

(l)
,Yp

ik

(l)
Admittance matrices defined for real and
reactive power flow calculation associated
with the nodes in the l-th extended area.

I. INTRODUCTION

IN the past 20 years, wholesale power markets operating in
transmission systems have been effective at coordinating

the operations of thousands of centralized power plants. Re-
cently the growth in volume and diversity of DERs and smart
buildings is transforming the operation of power systems and
the design of electricity markets. As DERs and smart buildings
continue to penetrate the electric power distribution systems,
dynamic resource management and optimization on a large-
scale system with thousands of DERs becomes difficult. This
difficulty can be addressed with a distribution system market
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approach where electricity customers can proactively partici-
pate in the resource dispatch and price formation processes.
The market approach has been advocated by many researchers
and policy makers. For example, the New York Public Ser-
vice Commission kicked off a proposal called Reforming the
Energy Vision (REV) which attempts to develop distribution
system operators (DSOs) that coordinate and facilitate the
planning and operations of various DERs and smart build-
ings. Leaving aside the policy debates surrounding the DSO
markets, the operation of DERs relies on a key algorithm,
the three-phase OPF algorithm, which still needs significant
development. The discrete control elements including switches
and transformer taps also play a very important role in
distribution system operations [1]–[4]. However, it is beyond
the scope of this paper.

The single-phase OPF problem for the transmission system
has been studied extensively in the past 50 years. The trans-
mission system can be treated as a single-phase system in the
OPF problem due to the relatively balanced electricity loads
across three phases and periodically transposed transmission
lines. The single-phase OPF problem is highly non-convex due
to the nonlinear relationship between voltage and power in-
jections. This problem can be solved by numerous algorithms
including Newton-based methods [5], [6], linear and quadratic
programming [7], nonlinear and polynomial programming [8],
interior point methods [9], and heuristic optimization methods
[10]. However, none of them guarantees a global optimum.
To obtain a global optimum, a SDP relaxation method was
recently proposed [11]. The method first transforms the OPF
problem to a semidefinite programming problem (SDP) where
the only non-convex constraint is a rank-one constraint. If
the rank-one constraint is dropped, then convex optimization
techniques can be used to solve the problem. The global
optimality of this convex relaxation method has been proven
for single-phase tree-networks [12] and a small group of
mesh networks [13] with some small perturbations in the
admittance matrix. Nonetheless, a rank-one solution can not
always be achieved with the convex relaxation algorithm. The
exactness of the convex relaxation has been investigated in
[14], [15]. The convex relaxation approach has been leveraged
to develop heuristic algorithms that solve rank-constrained
optimization problems [16]–[18]. However, the convergence
of these algorithms cannot be guaranteed.

Aside from the rank-one conundrum, the centralized SDP
algorithm does not scale very well with the size of the problem
[19]. Many researchers attempted to develop and implement
distributed algorithms to solve the centralized SDP problem.
Reference [20] introduced three distributed schemes to solve
the single-phase OPF problem: the auxiliary problem principle
(APP), the predictor-corrector proximal multiplier method
(PCPM), and the alternating direction multiplier method
(ADMM). The ADMM has been widely adopted in developing
distributed OPF solvers due to its simplicity and convergence
properties [19], [21]–[23]. Although decomposing the main
problem into multiple sub-instances of smaller-sized problems
makes the solver more efficient, the ADMM can be very slow
to converge to high accuracy [24]. In decomposing the main
problem many researchers have leveraged the chordal based

matrix completion theory through graph partitioning [25]–[32].
The heuristic matrix combination algorithm and the clique
amalgamation method were developed to further improve the
computational efficiency of single-phase OPF algorithms by
searching for better network decomposition schemes [26],
[33].

To coordinate the operations of DERs in the electric power
distribution systems, we must solve the three-phase OPF
problem. The single-phase OPF problem is insufficient for
two reasons. First, the electricity loads on three phases are
unbalanced in the distribution systems. Second, the distribution
feeders are not transposed. Only a few researchers have studied
the three-phase OPF problem [23], [34]. A quasi-Newton
method based approach was developed after transforming the
OPF problem with implicit function theorem in [34]. Authors
in [23] developed a distributed semidefinite programming
solver for the three-phase OPF problem based on ADMM
and the Lagrangian relaxation method. However, neither of the
algorithms guarantees convergence or global optimality. Fur-
thermore, these algorithms are not computationally efficient
enough to handle realistic distribution feeders with thousands
of buildings and customers.

The main goal of this paper is to develop a computationally
efficient and scalable three-phase OPF algorithm which is
capable of finding global optimal solutions. Specifically, we
first revisit the rank conundrum in solving three-phase OPF
problems. A counter example of a three-phase network is
provided to show that rank-one solution can not be guar-
anteed with the SDP relaxation method. To find a global
optimal solution efficiently, this paper proposes an innovative
three-phase OPF algorithm by synergistically combining the
convex iteration technique and the chordal based conversion
algorithm. We also propose a greedy algorithm to find an
appropriate grid partitioning scheme which results in lower
computational complexity. Numerical simulations are con-
ducted on the IEEE test feeders to validate the computational
efficiency and scalability of the proposed algorithm and the
optimality of the solutions. The simulation results show that
the proposed algorithm can find feasible and global optimal
solutions even when the SDP relaxation method fails. Fur-
thermore, the greedy grid partition algorithm is shown to be
effective in finding an appropriate chordal conversion which
makes the overall algorithm computationally efficient. Finally,
the simulation results from the IEEE 123-bus and 906-bus test
feeders demonstrate the scalability of the proposed algorithm.

The remainder of this paper is organized as follows: Section
II formulates the three-phase OPF problem in SDP format
with voltages in rectangular form. Section III first presents
the convex iteration method and the chordal based conversion
technique to solve the non-convex optimization problem. It
then describes how to synergistically combine these two
methods. In addition, a greedy grid partition algorithm is
proposed. The numerical study results of the IEEE distribution
test feeders are presented in Section IV. The conclusions are
stated in Section V.
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II. FORMULATION OF THE THREE-PHASE ACOPF

The SDP formulation of single-phase alternating current
OPF (ACOPF) problem was derived with voltages in rectan-
gular form [13]. Reference [23] extended the SDP formulation
to three-phase ACOPF problem with complex voltages. In this
section, we formulate the three-phase ACOPF problem with
voltages in the rectangular form.

A. Matrix Definition

For a three-phase n-node distribution network, define the
voltage vector as:

V
∆
= [E1

1 , E
2
1 , E

3
1 · · ·E1

n, E
2
n, E

3
n, F

1
1 , F

2
1 , F

3
1 · · ·F 1

n , F
2
n , F

3
n ]T

where Ep
k and F p

k are the real and imaginary parts of complex
voltage at node k with phase p.

Define the matrix Ψp
k as

Ψp
k

∆
= e3(k−1)+pe

T
3(k−1)+pY (1)

where Y is the admittance matrix of the distribution network
[23] and e3(k−1)+p is the standard basis vector with the [3(k−
1) + p]-th element being 1, the only non-zero entry.

e3(k−1)+p
∆
=[0, 0, 0, ..., 1, 0, ..., 0]T (2)

Define the admittance matrices to be used for power injec-
tion calculations as:

Yp
k

∆
=

1

2

[
Re(Ψp

k + Ψp
k
T

) Im(Ψp
k
T −Ψp

k)

Im(Ψp
k −Ψp

k
T

) Re(Ψp
k + Ψp

k
T

)

]
(3)

Yp
k

∆
= −1

2

[
Im(Ψp

k + ypk
′T

) Re(Ψp
k −Ψp

k
T

)

Re(Ψp
k
T − ypk

′
) Im(Ψp

k + Ψp
k
T

)

]
(4)

Then the real and reactive power injection equations can be
rewritten as follows:

P p
k,inj = Tr{Yp

kV V
T } (5)

Qp
k,inj = Tr{Yp

kV V
T } (6)

Define the admittance matrices Ψp
ik, Yp

ik, and Yp
ik to be used

for branch flow calculations as follows:

Ψp
ik

∆
= e3(i−1)+p

3∑
m=1

(e3(i−1)+m · ypmik − e3(k−1)+m · ypmik )T

Yp
ik

∆
=

1

2

[
Re(Ψp

ik + Ψp
ik

T
) Im(Ψp

ik
T −Ψp

ik)

Im(Ψp
ik −Ψp

ik
T

) Re(Ψp
ik + Ψp

ik
T

)

]
(7)

Yp
ik

∆
= −1

2

[
Im(Ψp

ik + Ψp
ik

T
) Re(Ψp

ik −Ψp
ik

T
)

Re(Ψp
ik

T −Ψp
ik) Im(Ψp

ik + Ψp
ik

T
)

]
(8)

where ypmik is the line admittance between node i with phase
p and node k with phase m.

Then the branch power flow connecting node i and node k
with phase p can be rewritten as follows:

Sp
ik = Tr{Yp

ikV V
T }+ jTr{Yp

ikV V
T } (9)

Define matrix Mp
i as:

Mp
k

∆
=

[
e3(k−1)+pe

T
3(k−1)+p 0

0 e3(k−1)+pe
T
3(k−1)+p

]
(10)

Then the square of voltage magnitude can be rewritten as:

|V p
i |

2 = Tr{Mp
kV V

T } (11)

B. Three-phase ACOPF Problem

The objective of the three-phase ACOPF problem in a dis-
tribution system is to maximize total social welfare, minimize
total power purchase cost, or minimize distribution system
losses. The three-phase OPF problem can be formulated in
X = V V T with matrices defined in section II.A as follows:

Formulation 1:

min
X

C(X) (12)

subject to:

P p
Gk
− P p

Dk
= Tr{Yp

kX}, k ∈ N \G (13)

Qp
Gk
−Qp

Dk
= Tr{Yp

kX}, k ∈ N \G (14)

P p
k − P

p
Dk
≤ Tr{Yp

kX} ≤ P
p

k − P
p
Dk
, k ∈ G (15)

Qp

k
−Qp

Dk
≤ Tr{Yp

kX} ≤ Q
p

k −Q
p
Dk
, k ∈ G (16)

Tr{Yp
ikX}

2 + Tr{Yp
ikX}2 ≤ (Sp

ik
max

)2, i, k ∈ N (17)

(V p
k)2 ≤ Tr{Mp

kX} ≤ (V
p

k)2, k ∈ N (18)

X = V V T (19)

Equation (19) is equivalent to the following two equations:

X � 0 (20)

rank(X) = 1 (21)

In this paper, the objective function (12) is chosen to
minimize the total power purchase cost.

C(X) =

3∑
p=1

∑
k∈G

cpkP
p
k (22)

where cpk and P p
k are the supply offer price and generation

quantity at controllable generation node k with phase p. Equa-
tions (13) and (14) enforce real and reactive power balance
constraints for load buses. Equations (15) and (16) represent
real and reactive power generation capacity constraints for
buses with distributed generations. Power flow constraints are
modeled in equation (17). Voltage constraint is enforced in
equation (18). Equation (19) can be replaced by a positive
semidefinite constraint and a rank constraint. The rank con-
straint is a non-convex constraint.
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III. CONVEX ITERATION AND CONVERSION METHOD

A. Rank-one Conundrum Revisited

The rank constraint makes it difficult to solve the reformu-
lated OPF problem. Many researchers tried to solve the OPF
problem by applying the semidefinite relaxation technique
in which the rank constraint is dropped [11], [13], [15],
[23], [27], [33]. Some heuristic methods were developed to
recover a rank-one solution for single-phase networks when
the semidefinite relaxation technique fails [16], [17]. The
existence of global optimal rank-one solution has been proved
for single-phase radial network in [12]. It is claimed in [23]
that semidefinite relaxation is “exact” for the three-phase OPF
problem in a radial network. However, no rigorous proof was
provided. The semidefinite relaxation technique did result in
global optimal solution in the numerical tests [23]. However,
the results are obtained when the supply offer prices of the
three phases are exactly the same. In practice, it is not realistic
to assume that the supply offer prices from distributed energy
resources on three phases will be the same [35]. A counter
example is given in this subsection to prove that semidefinite
relaxation is not “exact” for three-phase OPF problems.

In order to prove the “exactness” of SDP relaxation for
OPF problems of single-phase tree-networks, the geometry of
the feasible power injection region is analyzed [12]. Similarly,
the feasible power injection region of a three-phase two-node
network is studied here. It can be assumed that a network
consists of two three-phase nodes connected by a typical
distribution line. Define P 1

1 , P
2
1 , P

3
1 and P 1

2 , P
2
2 , P

3
2 as the

power injections of the three phases at node 1 and node
2 respectively. Assuming the voltage magnitudes are around
1 per unit, the power injections can be calculated with the
differences in voltage angles.

The 2-bus three-phase network is analyzed under two sce-
narios. In the first scenario, it is assumed that the supply
offer prices of DERs are the same for all three phases. Then,
the OPF problem is equivalent to optimize over the feasible
injection region of power summed over three phases. The
feasible region on the plane of power injection at node 1 versus
node 2, i.e., P1 versus P2, is depicted in Figure 1.

In the second scenario, it is assumed that the supply offer
prices are different on the three phases. In this case, the above-
mentioned equivalence is no longer valid. The projection of
the six-dimensional feasible power injection region onto P 1

1

versus P 1
2 plane for the second scenario is depicted in Figure

2.
In the first scenario, the supply offer prices of the three

different phases are the same. Therefore, the feasible power
injection region on the P1 and P2 plane is approximately
an ellipsoid as shown in Figure 1. By dropping the rank
constraint, the new feasible region can be obtained by taking
the convex hull of the original region, which is the same
ellipsoid. The optimal solution is located on the Pareto front
of the feasible power injection region. Therefore, relaxing the
rank constraint doesn’t influence the optimal solution as the
Pareto front of the two feasible power injection regions are
the same.

Fig. 1. Feasible power injection region of a two-node network with the same
supply offer prices on three phases

Fig. 2. Feasible power injection region of a two-node network with different
supply offer prices on three phases

In the second scenario, the supply offer prices of DERs
on three phases are different. The projection of the feasible
power injection region onto the P 1

1 and P 1
2 plane is non-

convex as shown in Figure 2. Taking convex hull will enlarge
the original feasible region. Therefore, the Pareto front of the
relaxed problem is different and the solutions with semidefinite
relaxation technique will have higher ranks. To resolve the
rank conundrum, we advocate the adoption of the convex
iteration technique to solve the three-phase OPF problem.

B. Convex Iteration

Instead of directly dropping the rank constraint in Formula-
tion 1, we advocate the adoption of the convex iteration tech-
nique to express the rank-constrained optimization problem as
iteration of the convex problem sequence (23) and (24) [36]
in Formulation 2:

Formulation 2:

min
X

C(X) + wTr(XW ∗)

subject to
X ∈ B
X � 0

(23)

min
W∈SNX

Tr(X∗W )
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subject to
0 �W � I

Tr(W ) = NX − 1
(24)

where B denotes the feasible region of X defined by equations
(13) − (18), W ∗ represents the optimal solution to semidef-
inite program (24), and X∗ denotes the optimal solution to
semidefinite program (23). The size of X and W are both
NX × NX . The closed-form solution of the second convex
optimization problem (24) is

W = U(:, 2 : NX)U(:, 2 : NX)T (25)

where U can be obtained from the eigenvalue decomposition

X∗ = UΛUT (26)

The result achieved from SDP relaxation can be used as a
starting point, as the convex hull usually provides a tight lower
bound. The initial value of the direction matrix can be chosen
as the zero matrix.

It has been proved that the convex iteration algorithm always
converges and the global optimality can be achieved when the
objective function of the second step in the iteration vanishes
[36]. In other words, a global optimal solution can be obtained
if the convex iteration algorithm converges and the linear
regularization term Tr(X∗W ) becomes zero. The optimal
direction matrix W ∗opt is defined as any positive semidefinite
matrix yielding optimal solution X∗ of rank one. Therefore
, the following two problems are equivalent when W ∗opt is
found.

min C(X) + wTr(XW ∗opt)
s.t. X ∈ B

X � 0
≡

min C(X)
s.t. X ∈ B

X � 0
rank(X) = 1

It should be noted that the convex iteration algorithm is
different from the relaxation of the rank-constrained opti-
mization problem. However, at global optimality, the convex
iteration formulation is equivalent to the relaxed problem.
The convex iteration algorithm was successfully applied in
other applications including sensor-network localization and
compressed sensing [36]. By contrast, penalization methods
[17], [18] tries to recover a rank-one solution from the lower
bound of the optimal solution by minimizing either the voltage
difference or reactive power loss. The recovered rank-one
solution is only near-optimal or local-optimal.

C. Intuition of Convex Iteration Algorithm

The derivation of the convex iteration algorithm can be
intuitively explained as follows. For a rank-one positive
semidefinite matrix, the largest eigenvalue is also the only non-
zero eigenvalue, i.e.,

Tr(X) =
∑
i

λ(X)i = λmax(X) (27)

The rank-one constraint is equivalent to the following con-
straint:

Tr(X)− λmax(X) = 0 (28)

where the largest eigenvalue can be obtain by:

max
||u||2=1

uTXu

Therefore, constraint (28) can be rewritten as:

{ min
||u||2=1

Tr(X(I − uuT ))} = 0

This is equivalent to:

{ min
I�W�0

Tr(XW )} = 0 (29)

By multiplying the equality constraint (29) with w and adding
it to the objective function (12), the original problem in
Formulation 1 can be rewritten as:

min
X,W

C(X) + wTr(XW )

subject to
X ∈ B
X � 0

I �W � 0

(30)

As shown in the above optimization problem formulation,
the rank-one constraint is re-expressed as a bilinear term in
the objective function. For a traditional bilinear optimization
problem, iterative linear programming method can be applied
to find the optimal solution(s). In the context of semidefinite
programming, the optimization problem (30) can be tackled
by iteratively solving the convex problem sequence (23) and
(24).

The meaning of the direction matrix W can also provide us
some intuition about the inner working of the convex iteration
algorithm. Let’s define matrix subspace Sn as

Sn
∆
= {(I −W )X(I −W )|X ∈ SN

+ } (31)

It can be shown that the orthogonal compliment of Sn is

S⊥n = {WXW |X ∈ SN
+ } (32)

The optimal solution to semidefinite program (23) X∗ can
be decomposed into two components (33). The first com-
ponent is the projection of X∗ onto subspace Sn, which is
(I −W )X∗(I −W ). The second component is the projection
of X∗ onto subspace S⊥n , which is WX∗W .

X∗ = (I −W )X∗(I −W ) +WX∗W (33)

According to Eckart-Young Thereom, the best rank-one
approximation of X∗ in terms of Frobenius norm distance
is:

X̂∗ = U(:, 1)Λ(1, 1)U(:, 1)T (34)

It can be shown that the following equality holds:

(I −W )X∗(I −W ) = U(:, 1)Λ(1, 1)U(:, 1)T (35)

Therefore, the projection of X∗ onto Sn is X̂∗. Hence, polar
direction −W can be regarded as pointing toward the set of all
rank-1 positive semidefinite matrices whose nullspace contains
that of X∗.
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D. Chordal Conversion

Coming back to Formulation 1 and first setting aside the
rank constraint, a SDP programming problem needs to be
solved. In most of the SDP solvers, the primal-dual interior-
point method is adopted. The disadvantage of the primal-
dual interior-point method is that it is time-consuming to
construct the dense Schur complement matrix when solving
large-scale problems. To address this drawback, the underlying
aggregated sparsity of the power network is exploited by
researchers [27], [33]. The semidefinite completion theory
allows us to exploit the chordal sparsity of radial distribution
networks [37]. The semidefinite completion theorem states
that a symmetric matrix is positive semidefinite completable
if and only if all of the small matrices associated with
the maximal cliques of the graph derived from the whole
matrix are positive semidefinite. This property allows the SDP
problem to be converted into another form with smaller-sized
positive semidefinite variables. The details of the conversion
method are described in [26], [38]. When decomposing the
graph of large networks, the intersections of maximal cliques
are not empty. Thus, equality constraints of the intersection
areas are introduced which may increase the dimension of
the Schur complement matrix. Decisions need to be made to
determine the trade-off between the sparsity and order of the
Schur complement matrix. Some heuristic algorithms of clique
amalgamation were developed in [26], [33].

By adopting chordal conversion, the original three-phase
OPF problem (Formulation 1) can be reformulated as follows:

Formulation 3:

min
X

NA∑
l=1

Cl

(
Xext

l

)
(36)

subject to:

Xext
l ∈ B(l), l = 1, 2, · · ·NA (37)

Xext
l

(r)
= Xext

r
(l)
, l, r = 1, 2, · · ·NA (38)

Xext
l � 0, l = 1, 2, · · ·NA (39)

rank(Xext
l ) = 1, l = 1, 2, · · ·NA (40)

where B(l) is the feasible region of Xext
l satisfying

P p
Gk
− P p

Dk
= Tr{Yp

k
(l)
Xext

l }, k ∈ Al

Qp
Gk
−Qp

Dk
= Tr{Yp

k

(l)
Xext

l }, k ∈ Al

P p
k − P

p
Dk
≤ Tr{Yp

k
(l)
Xext

l } ≤ P
p

k − P
p
Dk
, k ∈ Al \G

Qp

k
−Qp

Dk
≤ Tr{Yp

k

(l)
Xext

l } ≤ Q
p

k −Q
p
Dk
, k ∈ Al \G

Tr{Yp
ik

(l)
Xext

l }2+Tr{Yp
ik

(l)
Xext

l }2 ≤ (Sp
ik

max
)2, k ∈ Al∩G

(V p
k)2 ≤ Tr{Mp

k
(l)
X} ≤ (V

p

k)2, k ∈ Al

Al is the set of nodes in the l-th area. Aext
l denotes the set of

nodes in the l-th extended area which is defined as the union
of Al and the nodes of the other areas directly connected to
the l-th area. A more detailed description of the extended area

concept is provided in [23]. V ext
l denotes the voltage vector

with the nodes in Aext
l . Xext

l
(r) is the sub-matrix of Xext

l

collecting the columns and rows of Xext
l corresponding to the

voltages of Aext
l

(r)
= {Aext

l ∩Aext
r }.

The decomposition of rank constraint (21) is obvious. If
matrix X is rank-one, then all the sub-matrices Xext

l are rank-
one. If all the sub-matrices Xext

l are rank-one, then voltage
vector V can be constructed with the results of singular value
decomposition of all sub-matrices Xext

l . Consequently, matrix
X can be obtained from V .

E. Chordal Conversion Based Convex Iteration

By synergistically combining the chordal conversion method
and the convex iteration technique, we propose a new iterative
three-phase OPF solution algorithm as follows.

Formulation 4:
Step 1:

min
X

NA∑
l=1

Cl

(
Xext

l

)
+

NA∑
l=1

wl Tr(X
ext
l W ∗l ) (41)

s.t.
Xext

l ∈ B(l), l = 1, 2, · · ·NA (42)

Xext
l

(r)
= Xext

r
(l)
, l, r = 1, 2, · · ·NA (43)

Xext
l � 0, l = 1, 2, · · ·NA (44)

Step 2:

Wl = Uj(:, 2 : NXext
l

)Uj(:, 2 : NXext
l

)T (45)

where the size of Xext
l is NXext

l
×NXext

l
. Uj is obtained from

the singular value decomposition.

Xext
j = UjΛjU

T
j (46)

At a global optimum where the trace regularization term
equals to zero, Formulation 4 becomes the convex equivalent
of Formulation 3. The feasible set in Formulation 4 contains
all rank-one symmetric matrices. An optimal rank-one solution
X∗opt from Formulation 4 will also minimize the objective
function of Formulation 3.

The convergence to global optimality from an arbitrary
initial point is not guaranteed. However, the algorithm will
always arrive at a stalling point when the trace regular-
ization term no longer decreases due to the monotonically
non-increasing objective function sequence [36]. To re-start
the algorithm with new search directions, the randomization
technique can be leveraged [36]. Specifically with rank-one
constraints, the direction matrices can be reinitialized as:

Wl =Uj(:, 2 : NXext
l

) (Uj(:, 2 : NXext
l

)T

+rand(NXext
l
, 1)Uj(:, 1)T )

However, the re-start process may fail by converging to another
or the same stalling point with a rank larger than one. In
addition, the re-start process could make the algorithm much
more time-consuming.
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F. Greedy Partition of the Grid

The computational efficiency of the chordal conversion
based convex iteration algorithm depends heavily on the
choice of grid partition scheme. This subsection develops a
greedy algorithm to find an appropriate grid partition scheme.
The algorithm development is motivated by the relationship
between the computational complexity of the SDP problem in
the first step of Formulation 4 and the nonzero elements in
the search direction matrix.

A closer look is taken firstly at the computational efficiency
of the interior point method which is adopted by most of
the existing SDP solvers including SeDuMi [39], SDPA, and
MOSEK. As SeDuMi is one of the most popular open source
SDP solver package, it is chosen for illustration purpose in
this subsection.

The SDP in Formulation 4 is first transformed to the
standard conic form. The standard conic form of the SDP in
formulation 4 can be written as follows.

min cTx

Ax = b

x ∈ S+

where x is the vectorized primal variable and S+ is the
semidefinite cone. In the primal-dual interior point method,
scaling technique [40] is widely used. AHO [41], NT [42],
and HKM [43] scaling are the most popular ones. With NT
scaling adopted in SeDuMi, the scaling factor D [40], [44] is
introduced to obtain the search direction in its iterative wide
region method. Preconditioned gradient method is adopted
in SeDuMi to obtain the inverse of ADAT . In the precon-
ditioning step, Cholesky decomposition of matrix ADAT is
performed. This is the most computationally expensive process
in solving large-scale SDP problems. The computation cost
of Cholesky decomposition heavily depends on the number
of none-zero elements in matrix ADAT . Therefore, to reduce
the computation time, a greedy grid partition algorithm should
search for the grid partition scheme which results in the least
number of non-zero elements in matrix ADAT .

For linear programming, the process of selecting the matrix
ADAT with the smallest number of non-zero elements can
be accomplished by selecting matrix AAT . This is because
the sparsity patterns of the matrices ADAT and AAT are the
same. Although this relationship doesn’t hold for semidefinite
programming, it still provides a good approximation. In other
words, as long as the sparsity pattern does not vary a lot
among different grid decomposition schemes, the partition
scheme with smaller-sized AAT matrix is more computa-
tionally efficient in general. Based on this approximation, a
greedy algorithm is developed to find the partition scheme
which yields a AAT matrix with the smallest size. The greedy
algorithm can be carried out as in algorithm 1.

IV. NUMERICAL STUDY

The proposed chordal based convex iteration algorithm with
greedy grid partition scheme is implemented in YALMIP [45].
Simulations are conducted on the IEEE 4-bus, 10-bus, 13-
bus, 34-bus, 37-bus, 123-bus, and 906-bus three-phase test

Algorithm 1 Greedy algorithm for grid partition
Initialize ns = 1
while 1 do

if ns = 0 then
break

else
ntemp = ns
for i = 1 : ns do

search for a possible cut in subarea i;
if there exists a cut which reduces the size of AAT

then
search along the edges in subarea i; find the cut
which reduces the size of AAT the most,
ntemp = ntemp + 1 and record the edge as a cut.

else
subarea i is finalized, i.e.
no more search will be performed in subarea i;
ntemp = ntemp − 1.

end if
end for
ns = ntemp

end if
end while

feeders to validate 1) the optimality and feasibility of the
solutions from the proposed convex iteration algorithm, 2) the
computational efficiency of the greedy grid partition scheme,
and 3) the scalability of the chordal conversion based convex
iteration algorithm. A Dell workstation with a 64-bit Intel
Xeon Quad Core CPU at 3.30 GHz with 16 GB of RAM
is used to perform the simulations.

A. Solution Optimality and Feasibility

The IEEE three-phase test feeders are modified to account
for scenarios where the supply offer prices on the three phases
are different. In the IEEE 4-bus test feeder, the loads on
three phases at node 4 are set as 1800KW , 1600KW , and
1400KW . The supply offer prices of the three phases are set
as $1/KWh, $0.5/KWh, and $0.2/KWh. Distribution gen-
erations are assumed to be located on node 4 with a generation
capacity of 200KW per phase. In the 10-bus test feeder [23],
the loads on the three phases are set as 700KW , 530KW , and
600KW to create unbalanced scenario. The supply offer prices
of the three phases are set as $1/KWh, $0.3/KWh, and
$0.6/KWh. Distributed generations are placed on node 5 and
7 with a generation capacity of 50KW per node per phase. In
the IEEE 13-bus test feeder, the load profile on the three phases
is kept the same as 1175KW , 1039KW , and 1252KW .
Distributed generations are placed on node 611, 652, 671,
and 634 with a generation capacity of 50KW per node per
phase. The supply offer prices of the three phases are set as
$0.6/KWh, $0.3/KWh, and $1/KWh. For the IEEE 34-bus
test feeder, 50% load profile is adopted to avoid incorporating
discrete control variables of the voltage regulators. The loads
on the three phases are 303KW , 292KW , and 289.5KW .
The distributed generations are placed on node 814, 836, and
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890 with generation capacity of 20KW per node per phase.
The supply offer prices of three phases are set as $1/KWh,
$0.9/KWh, and $0.8/KWh. For the IEEE 37-bus test feeder,
the distributed generations are placed on node 701, 704, 707,
711, 744, 730, and 734 with generation capacity of 50KW per
node per phase. The supply offer prices of three phases are
set as $0.6/KWh, $0.3/KWh, and $1/KWh. For the IEEE
123-bus test feeder, the distributed generations are placed on
node 7, 18, 25, 35, 44, 54, 72, 76, 89, 97, and 105, with
generation capacity of 50KW per node per phase. The supply
offer prices of three phases are set as $1/KWh, $0.3/KWh,
and $0.6/KWh. For the IEEE European LV test feeder with
906 nodes, the distributed generations are placed on node 145,
155, 391, 707, and 745 with generation capacity of 0.5KW
per node per phase. The supply offer prices of three phases
are set as $0.6/KWh, $0.7/KWh, and $0.5/KWh.

To illustrate the optimality and feasibility of solutions under
the proposed algorithm, a comparison of the solutions obtained
from traditional methods, including Powell method [46], [47]
and interior-point method [48], [49], and the proposed convex
iteration method is shown in Table I. Additional test scenarios
are created by varying the supply offer prices of the DERs.

TABLE I
COMPARISON OF TRADITIONAL METHODS AND THE CONVEX ITERATION

METHOD WITH DIFFERENT PRICES FOR DERS

Test
system

Prices of three
phases ($/kWh)

Objective value ($/hour)

Powell Interior
Point

Convex
Iteration

4-bus
test feeder

1/0.5/0.2 3121.9 3121.9 3121.9
0.9/0.45/0.18 3091.9 3091.9 3086.9

10-bus
test feeder

1/0.3/0.6 1229.2 1229.2 1229.1
0.8/0.24/0.48 1191.4 1191.4 1191.3

13-bus
test feeder

0.6/0.3/1 2345.4 2345.4 2345.4
0.48/0.24/0.8 2290.2 2290.2 2290.2

34-bus
test feeder

1/0.9/0.8 832.7 832.7 830.8
0.9/0.81/0.72 816.5 816.5 815.4

37-bus
test feeder

0.6/0.3/1 1740.3 1740.3 1739.5
0.54/0.27/0.9 1675.9 1675.9 1675.4

123-bus
test feeder

1/0.3/0.6 2414.6 2414.5 2413.6
0.8/0.24/0.48 2205.6 2205.6 2205.0

906-bus
test feeder

0.6/0.7/0.5 38.4 38.3 38.2
0.54/0.63/0.45 37.9 37.9 37.7

As shown in Table I, the proposed convex iteration approach
achieves lower objective values on 11 out of 14 test scenarios.
The traditional methods arrive at the same solution as the
proposed convex iteration method on the other 3 test scenarios.
As the size of the test feeder increases, it becomes more
difficult for the traditional methods to match the performance
of the proposed convex iteration algorithm.

To illustrate the global optimality and feasibility of the
proposed algorithm, another comparison of solutions derived
from the SDP relaxation method [11], [13], [23] and the
proposed convex iteration method with the default setting is
shown in Table II.

It can be seen from Table II that the SDP relaxation method
does not yield a rank-one solution by directly removing the
rank constraint. For the IEEE 4-bus, 10-bus and 13-bus test
feeders, the grids do not need to be partitioned. For the

TABLE II
COMPARISON OF THE SDP RELAXATION METHOD AND THE CONVEX

ITERATION METHOD WITH DIFFERENT PRICES FOR THREE PHASES

Test
system

Method
Rank of
solution

Objective value
($/hour)

4-bus
test feeder

SDP relaxation 3 3085.6
convex iteration 1 3121.9

10-bus
test feeder

SDP relaxation 7 1216.3
convex iteration 1 1229.1

13-bus
test feeder

SDP relaxation 3 2319.5
convex iteration 1 2345.4

34-bus
test feeder

SDP relaxation 6* 831.8
convex iteration 1 830.8

37-bus
test feeder

SDP relaxation 1* 1739.5
convex iteration 1 1739.5

123-bus
test feeder

SDP relaxation 6* 2413.6
convex iteration 1 2413.6

906-bus
test feeder

SDP relaxation 6* 38.2
convex iteration 1 38.2

IEEE 34-bus, 37-bus, 123-bus, and 906-bus test feeders, the
same grid partition scheme is adopted for both the SDP
relaxation and the proposed convex iteration methods. The star
symbol, ∗, represents the highest rank among all partitioned
areas. The SDP relaxation method only succeeds in finding
a feasible rank-one solution for the 37-bus test feeder. The
high rank solutions in other cases do not have any physical
meaning. In most cases, the solution of the SDP relaxation
method provides a lower bound of the original non-convex
optimization problem. For the 34-bus test feeder, the SDP
solver stops at a near-global optimal solution of the relaxed
problem, which has a higher value than that of the convex
iteration method. The numerical difficulty is caused by the
extremely long and short distribution lines [50]. On the other
hand, the proposed chordal conversion based convex iteration
algorithm always produces a rank-1 solution, which is the
global optimum.

TABLE III
COMPARISON OF THE SDP RELAXATION METHOD AND THE CONVEX

ITERATION METHOD WITH SAME PRICES FOR THREE PHASES

Test
system

Method
Rank of
solution

Power loss
(kW)

4-bus
test feeder

SDP relaxation 1 325.9
convex iteration 1 325.9

10-bus
test feeder

SDP relaxation 1 12.2
convex iteration 1 12.2

13-bus
test feeder

SDP relaxation 1 89.4
convex iteration 1 89.4

34-bus
test feeder

SDP relaxation 6* 38.3
convex iteration 1 37.5

37-bus
test feeder

SDP relaxation 1 26.4
convex iteration 1 26.4

123-bus
test feeder

SDP relaxation 6* 32
convex iteration 1 34.7

906-bus
test feeder

SDP relaxation 7* 1.5
convex iteration 1 1.3
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If the prices are set to be $1/KWh for all three phases,
the original problem is equivalent to minimization of the total
power losses. As shown in Table III, the SDP relaxation
method is able to find the global optimum for the three small-
scaled systems, which is consistent with the analysis in section
III.A and reference [23].

At last, a comprehensive comparison between the penalized
SDP method [18] and the proposed convex iteration algorithm
is conducted. The comparison results are shown in Table IV.

TABLE IV
COMPARISON OF THE PENALIZED SDP METHOD AND THE CONVEX

ITERATION METHOD

Test
system

Method eig2/eig1 Power injection
error (kW)

4-bus
test feeder

penalized SDP 9.1 ×10−9 5.6 ×10−3

convex iteration 2.6 ×10−9 3.9 ×10−3

10-bus
test feeder

penalized SDP 7.7 ×10−7 5.2 ×10−3

convex iteration 2.2 ×10−9 6.8 ×10−3

13-bus
test feeder

penalized SDP 3.8 ×10−7 0.2208
convex iteration 3.2 ×10−9 0.0629

34-bus
test feeder

penalized SDP 1.2 ×10−5 3.24
convex iteration 6.0 ×10−8 2.41

37-bus
test feeder

penalized SDP 3.0 ×10−6 1.54
convex iteration 3.0 ×10−6 1.54

123-bus
test feeder

penalized SDP 2.8 ×10−5 13.21
convex iteration 1.2 ×10−8 1.21

906-bus
test feeder

penalized SDP 5.1 ×10−5 6.7
convex iteration 6.0 ×10−8 2.3

For the IEEE 4-bus, 10-bus, and 13-bus test feeders, the
comparison is performed without graph partition. Although
the penalized SDP method did obtain a rank-one solution, the
ratio of the second largest eigenvalue of matrix X to its largest
eigenvalue is much larger than that of the proposed convex
iteration method. Moreover, as shown in Table IV, the power
injection error obtained from SVD of the rank-one solution
of the penalized SDP method is much larger than that of the
proposed convex iteration method.

For the IEEE 34-bus, 37-bus, 123-bus, and 906-bus test
feeders, the comparison is performed with the same graph
partition scheme obtained from the greedy algorithm. For
IEEE 34-bus, 123-bus, and 906-bus test feeders, the penalized
SDP method fails to find a rank-one solution. In IEEE 123-bus,
one of the partitioned areas containing nodes 44, 47, 48, 49,
and 50 is selected for verification. Under the penalized SDP
method, the non-negligible eigenvalues of the variable matrix
are 15.8738, 0.0004, 0.0004, 0.0002, 0.0002, and 0.0001. The
p.u. complex voltage of the boundary node 50 obtained from
rank-one approximation are different. The complex voltage
of the boundary point under the penalized SDP method are
[1.0167−0.0283j,−0.5260−0.8964j,−0.5035+0.8964j] and
[1.0170−0.0280j,−0.5262−0.8969j,−0.5044+0.8967j] in
two different extended areas. The power injection error under
the penalized SDP method is also much larger than that of the
proposed convex iteration method.

TABLE V
COMPUTATION TIME OF IEEE 4-BUS TEST FEEDER

Number of
partition areas

Computation
time (s)

Number of
iterations

Number of
Nonzero Elements

1 0.346 4 3.92×104

2 0.373 4 2.95×104

*2 0.373 4 2.95×104

3 0.484 4 3.63×104

4 0.577 4 4.25×104

TABLE VI
COMPUTATION TIME OF IEEE 13-BUS TEST FEEDER

Number of
partition areas

Computation
time (s)

Number of
iterations

Number of
Nonzero Elements

1 68.397 20 2.12×106

2 10.789 14 5.39×105

3 9.659 15 4.22×105

*4 8.714 16 3.61×105

4 7.732 16 3.18×105

5 6.567 13 3.24×105

6 6.602 14 2.77×105

7 5.768 14 2.27×105

8 6.020 14 2.27×105

9 6.374 15 2.27×105

13 8.019 16 2.53×105

B. Effectiveness of the Greedy Grid Partition Scheme

To validate the effectiveness of the proposed greedy grid
partition scheme, simulations are conducted on the IEEE 4-
bus and 13-bus test feeders under all possible grid partition
scenarios. An exhaustive search for all possible partition
scenarios is conducted. The computation times of all scenarios
are recorded. The results are then grouped by the number of
partitioned areas. The computation times being reported in
Table V and VI are the shortest computation times for each
number of partition areas using MOSEK. The computation
times obtained from the greedy partition scheme is denoted
by ∗.

It can be seen from Table IV and V that the computation
time of the proposed algorithm is approximately proportional
to the number of nonzero elements in matrix ADAT . The
greedy algorithm successfully found grid partitioning schemes
with very reasonable computation times. In the IEEE 4-bus
test feeder, the computation time with the greedy partition
scheme is almost the same as the shortest computation time
found by exhaustive search. In the IEEE 13-bus test feeder,
the computation time with the greedy partition scheme is only
3 seconds longer than the shortest computation time.
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C. Scalability of the Proposed Algorithm

As shown in Table VII, the computation times of the
three-phase OPF problems on all seven IEEE test feeders is
within 2 minutes using the entry level Dell workstation. The
combination of the chordal based conversion technique and
the greedy grid partition scheme made the proposed algorithm
computationally efficient.

TABLE VII
SCALABILITY OF PROPOSED ALGORITHM

Test
system

Computation
time (s)

Number of
iterations

Number of
Nonzero Elements

Rank of
Solution

4-bus 0.373 4 2.95×104 1

10-bus 12.127 29 2.53×105 1

13-bus 8.714 16 3.61×105 1

34-bus 4.161 3 1.25×106 1

37-bus 3.261 1 2.06×106 1

123-bus 27.182 3 4.93×106 1

906-bus 79.799 3 1.32×107 1

V. CONCLUSION

This paper develops a chordal conversion based convex
iteration algorithm to solve the three-phase OPF problem. A
greedy grid partition scheme is also developed to improve
the computational efficiency of the proposed algorithm. The
simulation results show that the greedy algorithm can find an
appropriate grid partition scheme which has similar computa-
tion time to that of the best partition found from the exhaustive
search. At last, the scalability of the proposed algorithm is
validated through simulations on the IEEE 123-bus and 906-
bus test feeders. The proposed OPF algorithm can find the
global optimal solutions within 2 minutes on an entry level
Dell workstation. However, it should be noted that it is possible
for the proposed convex iteration approach to converge to a
local optimum and the re-start strategy may fail. Therefore,
the proposed convex iteration algorithm does not guarantee
convergence to global optimum solution(s) in all distribution
feeders.
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