
Communication-efficient Distributed Solutions to a System of Linear
Equations with Laplacian Sparse Structure

Peng Wang, Yuanqi Gao, Nanpeng Yu, Wei Ren, Jianming Lian, and Di Wu

Abstract— Two communication-efficient distributed algo-
rithms are proposed to solve a system of linear equations
Ax = b with Laplacian sparse A. A system of linear equations
with Laplacian sparse A can be found in many applications,
e.g., the power flow problems and other network flow problems.
The first algorithm is based on the gradient descent method
in optimization and the agents only share two parts of the
system state instead of that of the whole system state, which
saves significant communication. The two parts shared by every
agent through a communication link are the state information
of its own and its neighbor connected by the communication
link. The second method is obtained from an approximation to
the Newton method, which converges faster. It requires twice as
much communication as the first one but is still communication-
efficient due to the low dimension of each part shared between
agents. The convergence at a linear rate of both methods is
proved. A comprehensive comparison of the convergence rate,
communication burden, and computation costs between the
methods is made. Finally, simulations are conducted to show
the effectiveness of both methods.

I. INTRODUCTION

Solving a system of linear equations Ax = b is one of the
most fundamental problems in many research fields. With
the emergence of Internet of Things, an increasing amount of
sensors and actuators are being integrated into the networked
systems around us. Hence, distributed methods to solve a
system of linear equations are attracting more attentions from
the researchers.

Many distributed algorithms to solve Ax = b were
proposed in the literature, e.g. [1]–[17]. These algorithms
assume that each agent knows some rows of the augmented
matrix

(
A b

)
. The algorithms in [12]–[17] are continuous-

time ones while those in [1]–[11] are discrete-time ones. In
this paper we focus on discrete-time distributed algorithms to
solve Ax = b. In [1], a geometrically convergent distribut-
ed algorithm is proposed for both synchronous and asyn-
chronous updates under repeatedly jointly strongly connected
graphs, which requires locally feasible initializations. Ref.
[10] extends the results in [1] by considering the influence
of communication and computation delays and arbitrary
initializations. In [2], distributed algorithms are proposed
to find the minimum norm solution of a system of linear

Peng Wang, Jianming Lian, and Di Wu are with the Pacif-
ic Northwest National Laboratory, 902 Battelle Boulevard, Rich-
land, WA. 99352. Corresponding emails: peng.wang@pnnl.gov,
jianming.lian@pnnl.gov, di.wu@pnnl.gov.

Yuanqi Gao, Nanpeng Yu, and Wei Ren are with the Departmen-
t of Electrical and Computer Engineering at the University of Cali-
fornia, Riverside, 900 University Ave., Riverside, CA. 92521. Corre-
sponding emails: ygao024@ucr.edu, nyu@ece.ucr.edu, and
ren@ece.ucr.edu

equations associated with weighted inner products. Ref. [9]
then broadens the results in [1] and [2], allowing arbitrary
initializations for convergence to a general solution and
special initialization for convergence to a solution closest
to a given point. When Ax = b has a unique solution, a
distributed algorithm is designed in [3] to allow arbitrary
initializations with feedback of the deviation from local
systems of linear equations and the geometric convergence
rate is proved. Also, when Ax = b has a unique solution, a
distributed algorithm is proposed in [8] using the subgradient
method and the linear convergence rate is proved. In [5]–[7],
a distributed algorithm that converges in finite time is also
proposed to solve Ax = b. The algorithm requires agents to
share the information of kernels of local equations with their
neighbors, which may lead to non-robustness. A distributed
method to solve Ax = b is proposed in [4] using M -Fejer
mappings and the convergence rates for two special cases
are also specified.

In the literature mentioned above, the agents need to share
their estimates of the state of the whole system. However,
in many applications where the matrix A is sparse and
the system is large-scale, the distributed methods in [1]–
[10] will lead to significant communication overhead. In this
case, communication-efficient distributed algorithms to solve
Ax = b are necessary. A communication-efficient distributed
method is proposed in [11] for general sparse matrices, but
the method in [11] requires the information of common
nonzero parts of agents’ rows and their neighbors’ columns.
When the matrix A is Laplacian sparse, the common nonzero
parts of different rows and columns actually require sharing
information of agents’ common neighbors, which might not
be available to the agents.

In this paper, we develop communication-efficient dis-
tributed algorithms to solve Ax = b with Laplacian sparse
A, which requires less communication than that in [11].
Matrices with Laplacian sparse structure can be found in
many problems such as network flow problems. In particular,
the power flow problem in the smart grid domain involves
network matrices with Laplacian sparse property. In our
proposed communication-efficient distributed algorithms, the
agents only transmit the information of their own and one of
their neighbors connected by the communication link, instead
of the state of the whole system as in [1]–[10] or the state
of their common neighbors as in [11]. In the first proposed
method, only two parts of the state vector of the system are
transmitted through each communication link while in the
second proposed method, two parts of the state vector and the
gradient vector, respectively, of the system are transmitted.

As each part of the state vector and the gradient vector
is low dimensional, both methods significantly reduce the
communication burden. We propose the first communication-
efficient distributed algorithm to solve Ax = b with Lapla-
cian sparse A based on a gradient descent method and prove
its geometric convergence. Then we propose an accelerated
communication-efficient distributed algorithm based on an
approximation to the Newton method. The algorithm based
on the approximated Newton method requires twice as much
communication as the one based on the gradient method, but
it converges faster.

The rest of the paper is organized as follows. In Section
II, some preliminary knowledge on graph theory, Laplacian
sparse matrix, and power flow problems is introduced. In
Section III, the two communication-efficient distributed al-
gorithms are proposed to solve Ax = b with Laplacian sparse
A and a comparison between them is made. Simulations are
conducted to illustrate the effectiveness of the two methods
in Section IV. Finally, the conclusions are stated in Section
V.

II. PRELIMINARIES

In this part, we will provide some preliminary knowledge
on graph theory, which is necessary for distributed algorithm-
s, Laplacian sparse matrix, which is our research focus in this
paper, and power flow problems, which provide applications
to our research focus.

A. Graph Theory

An m̄th order undirected graph, denoted by G(V,E), is
composed of a vertex set V = {1, · · · , m̄} and an edge set
E ⊆ V ×V . We use the pair (j, i) to denote the edge between
vertex j and vertex i. We suppose that (i, i) /∈ E, ∀i ∈ V .
We say that j is a neighbor of i if there is an edge between
i and j. The neighbor set Ni of vertex i is composed of the
neighbors of vertex i, i.e., Ni = {j : (j, i) ∈ E}. The number
of vertex i’s neighbors is denoted by |Ni|. The Laplacian
matrix L = [lij]m̄×m̄ ∈ Rm̄×m̄ associated with the graph G
is defined such that

lij =


1, j ∈ Ni
−|Ni|, j = i;

0, otherwise
.

A path between i and j is a sequence of edges
(i, i1), (i1, i2), · · · , (ip, j). An undirected graph is connected
if for every pair of vertices i and j (i 6= j), there is a path
between them.

B. Laplacian Sparse Matrix

We consider the matrix A with the following special sparse
structure:

Definition 1 (Laplacian sparse matrix): A matrix A has
the Laplacian sparse structure of a graph G if aij 6= 0 only
if i and j are neighbors in G or i = j, i.e., lij 6= 0, where aij
is the (i, j)th entry of matrix A. A block matrix A has the
Laplacian sparse structure of a graph G if Aij is a nonzero

matrix only if i and j are neighbors in G or i = j, i.e.,
lij 6= 0, where Aij is the (i, j)th block of matrix A.

Laplacian sparse matrices appear in many problems, e.g.,
power flow problems. In power flow problems, the Ybus
of a power system has Laplacian sparse structure if the
communication topology is the same as the physical one.
Also, the Jacobian of the power flow equations, though more
complex, can also be regarded as a Laplacian sparse matrix.
See Section II-C for details.

C. The Power Flower Problem

In this subsection, we will detail the relationship between
power flow problem and the Laplacian sparse matrix.

The power flow problem is very fundamental in the steady-
state analysis of electrical power systems. The power flow
problem is typically formulated as solving a system of
nonlinear equations, known as the power flow equations.
Laplacian sparse matrices emerge in numerical solutions to
power flow equations, e.g., the Newton-Raphson method. We
will give a brief introduction to single-phased power flow
problems and the Newton-Raphson method. A comprehen-
sive description of power flow problems and the Newton-
Raphson method can be found in [18].

Consider an electrical network modeled by a weighted
graph G = (V, E ,W), where V is a set of nodes, E a set
of links representing transmission/distribution lines, and W
a set of weights associated with E . The value of w ∈ W
depends on the electrical characteristics of the link, e.g., the
impedance of the conductor.

Let vi be the nodal voltage of node i, si be the net complex
power injection at node i, and Y be the bus admittance
matrix. Notice that Y has the same sparse structure as the
Laplacian matrix of G and has Laplacian sparse structure of
G.

Let vi = |vi|eθi , si = pi + qi, and Y = G+ B, where
 is the imaginary unit, |vi| is the nodal voltage magnitude,
θi is nodal voltage angle, pi is net active power injection,
qi is the net reactive power injection, G is the conductance
matrix, and B is the susceptance matrix. Then the power
flow equation is as follows:∑|V|

k=1 |vi||vk|(Gik cos θik +Bik sin θik)− pi = 0,∑|V|
k=1 |vi||vk|(Gik sin θik −Bik cos θik)− qi = 0,

(1)

where Gik and Bik are the (i, k)th entry of matrices G and
B, respectively, and θik is the nodal voltage angle difference
between nodes i and k. As the matrix Y has Laplacian sparse
structure of G, so do G and B. So when nodes i and k are
not connected, Gik and Bik are both zero.

The Newton-Raphson method to solve (1) is intro-
duced below. Define the vector of unknowns x =
[θ2, · · · , θ|V|, |v2|, · · · , |v|V||]T . x does not contain |v1|, θ1

since they are known. Let

pi(x) =
∑|V|
k=1 |vi||vk|(Gik cos θik +Bik sin θik),

qi(x) =
∑|V|
k=1 |vi||vk|(Gik sin θik −Bik cos θik),

(2)

and then (1) is converted to

pi(x)− pi = 0, i = 2, 3, · · · , |V|,
qi(x)− qi = 0, i = 2, 3, · · · , |V|.

(3)

In the Newton-Raphson method, Eq. (3) is iteratively
solved. In each iterative step, we need to solve a system
of linear equations as follows:

−J∆x = y (4)

where J is the Jacobian matrix of the functions in (3), y is
a constant related to (2) in each step.

The Jacobian matrix can be partitioned as J =(
Jpθ Jp|v|
Jqθ Jq|v|

)
, where Jpθ = ∂p(x)

∂θ , Jp|v| = ∂p(x)
∂|v| , Jqθ =

∂q(x)
∂θ , and Jq|v| = ∂q(x)

∂|v| . When Gik and Bik are both
zero, the (i, k)th entries of Jpθ, Jp|v|, Jqθ, Jq|v| are all zeros.
So each block of the Jacobian matrix has the same sparse
structure as the matrix G or B. As G and B have Laplacian
sparse structure of G, Jpθ, Jp|v|, Jqθ, Jq|v| also have Lapla-
cian sparse structure of G.

III. COMMUNICATION-EFFICIENT DISTRIBUTED
SOLUTIONS TO LINEAR EQUATIONS

In this section, we will develop two communication-
efficient distributed algorithms to solve Ax = b. The first
algorithm is based on the gradient descent method while
the second one on the approximated Newton method, which
converges faster than the first one. The first algorithm only
requires communication of two parts of the state vector of
the whole system through each communication link, i.e., the
two parts owned by the two agents connected by the link,
while the second algorithm also requires the communication
of the two corresponding parts of the gradient vector of the
whole system.

A. Problem Formulation

Suppose that we have a group of m̄ agents which form
the vertex set V and communication links between the agents
which form the edges between the vertices. Then we have a
graph G(V,E) to represent the agent network. For the graph
G, we have the following assumption:

Assumption 1: The communication topology of the agent
network is fixed, undirected, and connected.

Each agent knows some rows Ai, i ∈ V of A and the
corresponding entries bi in b. All the agents work together
to obtain the solution of Ax = b. We further assume that
the matrix A has a Laplacian sparse structure of G as in
Definition 1.

Remark 1: If the agent network G, instead of being con-
nected, consists of several connected components, a system
of linear equations Ax = b with Laplcian sparse A of G
is indeed composed of several independent subsystems of
linear equations. These subsystems of linear equations can
be independently solved.

Let A(i)
i be the nonzero part in Ai, x(i) the corresponding

parts in x, and L(i)
i the nonzero parts of Li, where Li is the

ith row of the Laplacian matrix L. Then the local equations
Aix = bi is equivalent to A(i)

i x(i) = bi.
Example 1: We consider a network G composed

of four agents with the Laplacian matrix

L =


−1 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −1

. Then A =


1 3.4 0 0

0.8 5 −9 0
0 −6.23 −3 6
0 0 −5 −0.96

 is a matrix with

Laplacian sparse structure of G. If each agent
owns one row of A, then A

(1)
1 =

(
1 3.4

)
,

A
(2)
2 =

(
0.8 5 −9

)
, A(3)

3 =
(
−6.23 −3 6

)
, and

A
(4)
4 =

(
−5 −0.96

)
. Correspondingly, x(1) =

(
x1 x2

)T
,

x(2) =
(
x1 x2 x3

)T
, x(3) =

(
x2 x3 x4

)T
, and

x(4) =
(
x3 x4

)T
. L(1)

1 =
(
−1 1

)
, L(2)

2 =
(
1 −2 1

)
,

L
(3)
3 =

(
1 −2 1

)
, and L(4)

4 =
(
1 −1

)
.

If we formulate solving Ax = b as a distributed optimiza-
tion problem as follows

min
1

2

∑
i∈V
‖Aixi − bi‖2

subject to xi = xj , ∀i, j ∈ V,

we then have the following lemma:
Lemma 1: Under Assumption 1 and the Laplacian sparse

structure of A, solving Ax = b is equivalent to solving

min f =
1

2

∑
i∈V
‖A(i)

i x(i) − bi‖2

subject to x
(i)
i = x

(j)
i , x

(j)
j = x

(i)
j , (i, j) ∈ E,

(5)

where x(i)
j is agent i’s local estimate on xj , j ∈ Ni ∪ {i}.

Proof: If x? is a solution of Ax = b, it is obvious that
x(i) =

(
x?j
)
j∈Ni∪{i}

, ∀i ∈ V is also an optimal solution to
(5), where x(i) =

(
x?j
)
j∈Ni∪{i}

is a collection of the entries
in x? corresponds to the neighbors of agent i and itself.

If x(1), x(2), · · · , x(m̄) form a solution of (5), denote x? =(
x

(1)T
1 x

(2)T
2 · · · x

(m̄)T
m̄

)T
. For any agent i, we have

x?j = x
(j)
j = x

(i)
j ,∀j ∈ Ni. Notice that A has Laplacian

sparse structure, so x(i) =
(
x?j
)
j∈Ni∪{i}

and thus Aix? =

A
(i)
i x(i) = bi.
We can then transfer the constrained optimization problem

in (5) to an unconstrained optimization problem with penalty
functions as follows:

Lemma 2: Let

fp =
1

2
[
∑
i∈V
‖A(i)

i x(i) − bi‖2

+
∑

(i,j)∈E

(‖x(i)
i − x

(j)
i ‖

2 + ‖x(j)
j − x

(i)
j ‖

2)].
(6)

If Ax = b has solutions, (5) is equivalent to

min fp. (7)

Proof: If Ax = b has solutions, we can see that the
solutions of (5) and (7) are those satisfying that A(i)

i x(i) =

bi, ∀i ∈ V and x(i)
i = x

(j)
i , x

(j)
j = x

(i)
j , (i, j) ∈ E. So (5)

is equivalent to (7) .
Next, we will propose a communication-efficient distribut-

ed algorithm to solve Ax = b by solving (7) based on the
gradient descent method.

B. Communication-efficient Algorithm Based on Gradient
Descent Method

In this subsection, we propose a communication-efficient
distributed algorithm to solve Ax = b based on the gradient
descent method with a constant step size and prove its
convergence at a geometric rate. For simplicity, we suppose
that dim(x

(i)
i) = 1, ∀i ∈ V , i.e., the state owned by every

agent is a scalar. It is not difficult to extend the results
to the cases when different agents own states of different
dimensions.

We first apply the gradient descent method with a constant
step size α to (7). For the gradient of fp, we have that

∂fp
∂x(i)

=A
(i)T
i (A

(i)
i x(i) − bi)

+
∑
j∈Ni

[(x
(i)
i − x

(j)
i) e

(i)
i + (x

(i)
j − x

(j)
j) e

(i)
j],

(8)

where e
(i)
j =

(
0 · · · 0 1 0 · · · 0

)T
with the po-

sition of 1 located at agent i’s local index of j. Also,
dim(e

(i)
j) =

∑
j∈Ni∪{i}

dim(x
(i)
j) = dim(x(i)).

Let

x =
(
x(1)T x(2)T · · · x(m̄)T

)T
(9)

and

∇f(x) =
(

(
∂fp
∂x(1))T (

∂fp
∂x(2))T · · · (

∂fp
∂x(m̄))T

)T
. (10)

From the gradient descent method

x(k + 1) = x(k)− α∇f(x(k)),

we obtain that for agent i,

x(i)(k + 1) =x(i)(k)− αA(i)T
i (A

(i)
i x(i)(k)− bi)

− α
∑
j∈Ni

(x
(i)
i (k)− x(j)

i (k)) e
(i)
i

− α
∑
j∈Ni

(x
(i)
j (k)− x(j)

j (k)) e
(i)
j .

(11)

Remark 2: The communication from agent j to agent i is
only the estimate of the states of agent i, e.g. x(j)

i , and agent
j, x(j)

j , by agent j rather than the states of all agents. So
(11) reduces significant communication compared with the
algorithms in [1]–[10]. Also, compared with [11], (11) does
not require sharing estimates of the states of their common
neighbors under Assumption 1 while the method in [11]
requires the information of the agents’ common neighbors,
which may not be available. As a result, (11) needs less
communication between agents than the method in [11].

For the performance of (11), we have the following result:
Theorem 1: If the system of linear equations Ax = b has

solutions and A is Laplacian sparse of the agent network,
x(i)(k), ∀i ∈ V in (11) converges in finite time or at a linear
rate to the optimal point of (7) if 0 < α < 2

λmax(∇2(fp)) ,
where ∇2(fp) is the Hessian of fp in (6) and λmax(·)
represents the maximal eigenvalue. Let

x?(k) =
(
x

(1)T
1 (k) x

(2)T
2 (k) · · · x

(m̄)T
m̄ (k)

)T
. (12)

Then x?(k), k = 1, 2, 3, · · · converges to a solution of Ax =
b.

When Ax = b has a unique solution, fp is strongly convex
and the convergence at a linear rate of (11) is a direct result
of Theorem 2.1.14 in [19]. But when Ax = b has multiple
solutions, fp in (6) is not strongly convex and thus the results
in [19] cannot be used to prove Theorem 1. But the proof
of the convergence of (11) when Ax = b has more than one
solution is omitted due to space limitation.

C. Communication-efficient Algorithm Based on Approxi-
mated Newton Method

A communication-efficient distributed algorithm was pro-
posed in the previous subsection, but we find in some
simulation examples that it is very slow. So in this subsec-
tion, we will propose an approximated Newton method to
accelerate the process to solve Ax = b, i.e., minimize (6).
For simplicity, we suppose that dim(x

(i)
i) = 1, ∀i ∈ V , i.e.,

the state owned by every agent is a scalar. It is not difficult
to extend the results to the cases where different agents own
states of different dimensions.

Remark 3: We can find an approximated Newton method
to solve distributed optimization problems in [20], which re-
quires the local objective functions to be strongly convex. But
in our problem, the local objective functions 1

2‖A
(i)
i x(i)−bi‖

are not strongly convex. Thus, the analysis in [20] does not
apply to the problem in this paper.

The centralized Newton method to minimize fp is as

x(k + 1) = x(k)− (∇2fp(x(k)))−1∇fp(x(k)).

For simplicity, we denote H = ∇2fp(x(k)) and g(k) =
∇fp(x(k)). Notice that H is a constant matrix for fp in (6).

As in (8), the gradient of fp is

∂fp
∂x(i)

=A
(i)T
i (A

(i)
i x(i) − bi)

+
∑
j∈Ni

[(x
(i)
i − x

(j)
i) e

(i)
i + (x

(i)
j − x

(j)
j) e

(i)
j].

For the Hessian of fp, we have that

∂2fp
∂x(i)2

= A
(i)T
i A

(i)
i +

∑
j∈Ni

e
(i)
i e

(i)T
i + e

(i)
j e

(i)T
j

= A
(i)T
i A

(i)
i + diag(|L(i)

i |)

and

∂2fp
∂x(i)∂x(j)

=

{
−e(i)

i e
(j)T
i − e(i)

j e
(j)T
j , j ∈ Ni

0, j 6= i and j /∈ Ni
,

where diag(|L(i)
i |) is a diagonal matrix whole diagonal

entries are the absolute values of L(i)
i , the nonzero entries of

the ith row of Laplacian matrix L.
As we do not find any method to compute the inverse

of the Hessian of fp in a distributed way, we will next
approximate it.

Let Di = γ
∂2fp
∂x(i)2 , where γ > 1 is a constant, and D =

diag(D1, · · · , Dm̄). Also, let F = H − D. Then we have
that

Fij =


(1− γ)(A

(i)T
i A

(i)
i + diag(|L(i)

i |)), i = j,

−e(i)
i e

(j)T
i − e(i)

j e
(j)T
j , j ∈ Ni,

0, otherwise

(13)

and we can see that F is Laplacian sparse.
Then, H = D + F and

H−1 = (D + F)−1

= D−
1
2 (I +D−

1
2FD−

1
2)−1D−

1
2

≈ D− 1
2 (I −D− 1

2FD−
1
2)D−

1
2

= D−1 −D−1FD−1

Then the distributed approximated Newton method to
solve Ax = b is

x(k + 1) = x(k)− (D−1 −D−1FD−1)g(k), (14)

where x is defined in (9). As matrix F is Laplacian sparse
from (13), then for agent i, (14) becomes

xi(k + 1) =xi(k)− (D−1
i gi(k)

−D−1
i

∑
j∈Ni∪{i}

FijD
−1
j gj(k)). (15)

Then we have the following result on the performance of
(14) and (15):

Theorem 2: Suppose that the system of linear equations
Ax = b has a unique solution and A is Laplacian sparse.
Then under Assumption 1, x(i)(k), ∀i ∈ V in (15) converges
at a linear rate to the optimal solution of (7). x?(k), k =
1, 2, 3, · · · in (12) converges to the solution of Ax = b.
The proof of Theorem 2 is omitted due to space limitation.

D. Comparison Between the Two Algorithms

We make a brief comparison between the gradient descent
based method (11) and the approximated Newton based
method (15) on the convergence rate, communication bur-
dens, and computation costs in this subsection.

In terms of the convergence rate, although a quantitative
convergence rate is not available for either method, we find
through simulations that the approximated Newton based
method (15) converges much faster than the gradient descent
based method (11).

The communication burden of the approximated Newton
based algorithm doubles that of the gradient descent based
algorithm in each iteration. We already know that agent i
in (11) only requires two parts, i.e., x(j)

i and x
(j)
j through

the communication link (j, i). In (15), let v(j) = D−1
j gj(k).

When j ∈ Ni, as Fij = −e(i)
i e

(j)T
i − e

(i)
j e

(j)T
j , agent i

only requires v(j)
i and v

(j)
j besides x(j)

i and x
(j)
j . So the

algorithm based on approximated Newton method requires
twice as much communication as that based on the gradient
descent method. But as the dimensions of x(j)

i and x(j)
j are

usually very low in spite of the scale of the whole system,
the algorithm based on approximated Newton method is
still communication-efficient. For example, in three-phase
power flow problems, dim(x

(j)
i), dim(x

(j)
i), dim(v

(j)
i), and

dim(v
(j)
j) are all at most three, so what is transmitted from

agent j to i is at most twelve scalars no matter how large the
whole system is in the approximated Newton based method.

The approximated network method (15) has a higher
computation cost than the gradient descent based method
(11).

First, both algorithms need to calculate gi(k) and then do
a subtraction of two dim(x(i))th order vectors. In addition,
agent i in (15) needs to do more computations. These
computations include

1) computation of a dim(x(i))th order symmetric matrix,
Di = A

(i)T
i A

(i)
i + diag(|L(i)

i |), which can be done at the
initialization step,

2) the inverse of a dim(x(i))th order symmetric matrix,
D−1
i , which can be done at the initialization step,
3) the multiplication of D−1

i and gi(k) per iteration,
4) summation of |Ni| vectors, v

(j)
i , with dimension

dim(x
(i)
i) after receiving the information from its neighbors

per iteration.
5) a subtraction of two vectors with dimension dim(x(i))

per iteration.
We can see that the extra computation burdens of (15)

depends on dim(x(i)) and dim(x
(i)
i). In many problems,

dim(x(i)) and dim(x
(i)
i) are usually very small in spite of the

scale of the whole system. For example, in three-phase power
flow problems, dim(x

(i)
i) is at most three and dim(x(i)) is

at most 3|Ni|, which is also small due to the sparse physical
connections in the real world systems. But as (15) usually
converges much faster than (11), the total communication
and computation costs of (15) may be lower than those of
(11).

IV. SIMULATION RESULTS

In this section, we conduct simulation studies to illustrate
the effectiveness of the communication-efficient distributed
algorithms (11) and (15).

The first simulation set up is based on solving one step of
update equations in the Newton-Raphson approach to solve
the power flow problem in (1). The testing system is the
IEEE 13-bus test feeder.

We treat each bus as an agent and assume that the
communication network and the physical network share the
same topology. The state vector of the whole system consists
of the magnitudes and phase angles of the complex voltages
of all buses. As the buses may be of one-phase, two-phase, or
three-phase, different agents have state vectors of differently
dimensional.

(a) (b)

Fig. 1. Norms of Errors between x
(i)
i (k) and Accurate Solutions

We can see that in Section II-C the Jacobian matrix
consists of four blocks J =

(
Jpθ Jp|v|
Jqθ Jq|v|

)
. Every block has

the same sparse structure as the Ybus of the power system
and thus is Laplacian sparse. The Jacobian matrix is more
complex than a Laplacian sparse matrix. However, we can
still solve (4) with the methods in (11) and (15).

The simulation results are shown in Fig. 1(a). The step size
α in (11) is chosen as 0.00002, and we observe that if we
choose α = 0.00003, (11) diverges. So α = 0.0002 might be
very close to the largest step size that makes (11) converge
in this example. The coefficient γ in (15) is selected as 2.

The second simulation set up is based on solving a random
generated system of linear equations with the Laplacian
sparse structure of its communication topology. And the
communication graph is a 30th-order undirected ring. The
simulation results are shown in Fig. 1(b). The step size α
in (11) is chosen as 0.1, and we observe that if we choose
α = 0.15, (11) diverges. So α = 0.1 might be very close to
the largest step size that makes (11) converge in this example.
The coefficient γ in (15) is selected as 2.

From the two simulation examples, we can see that both
algorithms converges to the solution of Eq.(4), and the ap-
proximated Newton based algorithm converges much faster
than that of the gradient descent based algorithm (11).

V. CONCLUSIONS

Two communication-efficient distributed algorithms have
been proposed in this paper. The first algorithm was based on
gradient descent method while the second one was based on
an approximation to the Newton method. The first algorithm
only required two parts of the state vector to be communi-
cated instead of the whole state vector, while the second
algorithm required twice as much communication as the
first one. In the first algorithm, the two parts communicated
through each communication link were the states owned by
the two agents connected by the communication link. In the
second algorithm, two parts of the gradient vector were also
transmitted besides the two parts of the state vector. The
second algorithm converged faster than the first one at the
price of heavier computation and communication burdens.
It was proven that both algorithms converged at a linear
rate. Future works may include convergence rate analysis
and asynchronous updates.

REFERENCES

[1] S. Mou, J. Liu, and A. S. Morse, “A distributed algorithm for solving
a linear algebraic equation,” IEEE Transactions on Automatic Control,
vol. 60, no. 11, pp. 2863–2878, Nov 2015.

[2] P. Wang, W. Ren, and Z. Duan, “Distributed minimum weighted norm
solution to linear equations associated with weighted inner product,”
in 2016 IEEE 55th Conference on Decision and Control (CDC), Dec
2016, pp. 5220–5225.

[3] L. Wang, D. Fullmer, and A. S. Morse, “A distributed algorithm with
an arbitrary initialization for solving a linear algebraic equation,” in
2016 American Control Conference (ACC), July 2016, pp. 1078–1081.

[4] P. Wang, W. Ren, and Z. Duan, “Distributed algorithm to solve a
system of linear equations with unique or multiple solutions from
arbitrary initializations,” IEEE Transactions on Control of Network
Systems, vol. PP, no. 99, pp. 1–1, 2018.

[5] F. Pasqualetti, R. Carli, and F. Bullo, “Distributed estimation via
iterative projections with application to power network monitoring,”
Automatica, vol. 48, no. 5, pp. 747 – 758, 2012.

[6] F. Pasqualetti, R. Carli, A. Bicchi, and F. Bullo, “Distributed estimation
and detection under local information,” IFAC Proceedings Volumes,
vol. 43, no. 19, pp. 263 – 268, 2010, 2nd IFAC Workshop on
Distributed Estimation and Control in Networked Systems.

[7] F. Pasqualetti, R. Carli, and F. Bullo, “A distributed method for
state estimation and false data detection in power networks,” in
2011 IEEE International Conference on Smart Grid Communications
(SmartGridComm), Oct 2011, pp. 469–474.

[8] K. You, S. Song, and R. Tempo, “A networked parallel algorithm for
solving linear algebraic equations,” in 2016 IEEE 55th Conference on
Decision and Control (CDC), Dec 2016, pp. 1727–1732.

[9] X. Wang, S. Mou, and D. Sun, “Improvement of a distributed algo-
rithm for solving linear equations,” IEEE Transactions on Industrial
Electronics, vol. 64, no. 4, pp. 3113–3117, April 2017.

[10] J. Liu, S. Mou, and A. S. Morse, “Asynchronous distributed algo-
rithms for solving linear algebraic equations,” IEEE Transactions on
Automatic Control, vol. 63, no. 2, pp. 372–385, Feb 2018.

[11] S. Mou, Z. Lin, L. Wang, D. Fullmer, and A. Morse, “A distributed
algorithm for efficiently solving linear equations and its applications
(special issue jcw),” Systems & Control Letters, vol. 91, pp. 21 – 27,
2016.

[12] G. Shi, B. D. O. Anderson, and U. Helmke, “Network Flows that
Solve Linear Equations,” ArXiv e-prints, Oct. 2015.

[13] B. D. O. Anderson, S. Mou, A. S. Morse, and U. Helmke, “Decen-
tralized gradient algorithm for solution of a linear equation,” ArXiv
e-prints, Sept. 2015.

[14] M. Yang and C. Y. Tang, “A distributed algorithm for solving general
linear equations over networks,” in 2015 54th IEEE Conference on
Decision and Control (CDC), Dec 2015, pp. 3580–3585.

[15] J. Liu, X. Chen, T. Basar, and A. Nedic, “A continuous-time distributed
algorithm for solving linear equations,” in 2016 American Control
Conference (ACC), July 2016, pp. 5551–5556.

[16] J. Zhou, X. Wang, S. Mou, and B. D. O. Anderson, “Finite-
time distributed linear equation solver for minimum $l 1$ norm
solutions,” CoRR, vol. abs/1709.10154, 2017. [Online]. Available:
http://arxiv.org/abs/1709.10154

[17] X. Wang, S. Mou, and B. D. O. Anderson, “A double-
layered framework for distributed coordination in solving linear
equations,” CoRR, vol. abs/1711.10947, 2017. [Online]. Available:
http://arxiv.org/abs/1711.10947

[18] A. Bergen and V. Vittal, Power Systems Analysis. Prentice Hall, 2000.
[19] I. Nesterov, Introductory Lectures on Convex Optimization: A Basic

Course, ser. Mathematics and its applications. Kluwer Academic
Publishers, 2004.

[20] A. Mokhtari, Q. Ling, and A. Ribeiro, “Network newton distributed
optimization methods,” IEEE Transactions on Signal Processing,
vol. 65, no. 1, pp. 146–161, Jan 2017.

