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Abstract— Distribution network reconfiguration algorithms 

change the status of sectionalizing and tie switches to reduce 

network line losses, relieve network overloads, minimize loss of 

load, or increase hosting capacity for distributed energy 

resources. Most of the existing work adopt centralized or 

hierarchical approaches to solve the network reconfiguration 

problem. This paper proposes a distributed scheme for network 

reconfiguration. In the distributed approach, the switches are 

represented by edge computing agents who communicate and 

work collectively with their neighbors to find the optimal 

reconfiguration solution. This scheme breaks the complex 

computation tasks required by centralized algorithms into much 

smaller ones. It also relieves the communication and data sharing 

burden via neighbor-to-neighbor communication. Simulation 

results on a 16-bus distribution test feeder demonstrate that the 

quality of the distributed solution is comparable to that of the 

centralized approach. 

 
Index Terms— Distribution network reconfiguration, 

distributed optimization, mixed-integer programming. 

I. INTRODUCTION 

Y changing the status of switches, distribution network 

reconfiguration algorithms improve the system 

performance under both normal and abnormal operating 

conditions. The objectives of distribution network 

reconfiguration range from loss, overload, and outage reduction 

to hosting capacity enhancement. The distribution network 

reconfiguration functionality is especially valuable when a 

larger number of distributed renewable resources (DERs) have 

been or are expected to be installed [1]. Both Federal sponsored 

programs and market forces are facilitating the wide-spread 

adoption of smart grid technologies such as the advanced 

metering infrastructure and remote controllable switches [2]. 

These two technologies enabled remote data collection and 
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actuation of loads and switches which are critical to the 

implementation of distribution network reconfiguration. 

The distribution network reconfiguration outcomes need 

satisfy two set of operational constraints. First, the system 

operating limits such as the line flow limit must not be violated. 

Second, the radiality constraint must be enforced on 

distribution network, that is, no loop should be formed.  

The existing literature on distribution network reconfig- 

uration can be divided into two groups based on the solution 

methodology. The first group adopts heuristic methods within 

which there are two approaches. The first approach starts with a 

meshed network and then open the switch that will contribute 

the most to the objective function [3, 4, 7, 8]. The procedure 

continues until a radial network is achieved. The second 

approach starts from a radial network and selects a pair of 

closed and open switches and exchange their status [5, 6]. 

Selecting such a pair requires an accurate estimation of loss 

reduction due to the exchange. 

The second group of literature formulates the distribution 

network reconfiguration problem as a mixed-integer program 

or a combinatorial optimization problem. The optimization 

problem is solved by either general-purpose metaheuristic 

algorithms or deterministic ones. Metaheuristic algorithms 

such as simulated annealing [9], genetic algorithm [10], and ant 

colony algorithm [11] have been used to solve the network 

reconfiguration problem. The deterministic algorithms work by 

linearizing or convexifying the original problem and converting 

it to a mixed-integer linear or convex optimization problem. 

Then mixed-integer linear or mix-integer convex optimization 

algorithms are adopted to solve the problem [1, 12, 13, 14]. The 

deterministic approach has a number of advantages such as the 

repeatability of solutions, guarantees of global optimality, and 

ease of implementation thanks to the optimization solvers. 

Most of the existing methods followed the centralized 

control framework within which all network data are collected 

and sent back to the control center to determine the 

reconfiguration solution. The switch control signals are then 

sent from the control center via the communication network for 

switch actuation. Although centralized approaches have shown 

good numerical performance on some distribution test feeders, 
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they usually result in high latency and communication 

bottleneck in the system. The distributed approaches on the 

other hand have great potential in reducing the communication 

burden, improving cybersecurity and preserving the privacy of 

smart meter data [15]. 

In this paper, we propose a distributed algorithm to 

overcome the communication bottleneck problem by 

distributing the computation task among the network switches 

(agents) with only neighbor-to-neighbor communications. Our 

contributions are as follows. First, a novel decomposed 

formulation of the distribution network reconfiguration 

problem is developed. Second, an alternating direction method 

of multipliers (ADMM) release and fix algorithm is adopted to 

solve the problem in a distributed manner. Third, we introduce 

a distributed approximated Newton’s method to speed up the 

distributed optimization algorithm. 

The rest of the paper is organized as follows. Section 2 

formulates the distribution network reconfiguration problem. 

Section 3 presents the distributed algorithm. Section 4 shows 

the simulation results. Section 5 provides the conclusion.  

II. PROBLEM FORMULATION 

A. Overview 

One of the most commonly used objectives of the network 

reconfiguration problem is the minimization of line losses. The 

constraints of the optimization problem include the operating 

limits such as the line flow limits, the power flow constraints, 

and the network radiality constraint. The power flow 

constraints ensure that the steady-state operating conditions are 

consistent with the electric loads, distributed generations and 

the physics of the distribution network. The network radiality 

constraints require that every primary feeder of the distribution 

network have a radial topology. The goal of network 

reconfiguration is to find on/off status for all switches that 

minimize the network losses while satisfying all operating 

constraints. In this work, the distribution network is assumed to 

be reasonably balanced so that the single-phase representation 

of the three-phase network is acceptable. It is also assumed that 

each line segment has a switch installed which can be remotely 

controlled for network reconfiguration. 

    The objective function of line loss minimization is given by: 

     min     ∑ 𝑟𝑖𝑗𝑙𝑖𝑗
2

𝑖𝑗∈𝐸

                                              (1) 

where 𝑟𝑖𝑗  is the resistance of line 𝑖𝑗 . 𝑙𝑖𝑗
2  denotes the squared 

magnitude of current flowing on line 𝑖𝑗. 𝐸 is the set of all lines 

in the network. Note that each line 𝑖𝑗 has a reference direction 

𝑖 → 𝑗  associated with it. Throughout the paper we use 𝑖𝑗  to 

denote a line if the reference direction is needed; otherwise we 

will simply use ℓ in place of 𝑖𝑗. 

    Two operating limits will be considered in the problem 

formulation, namely the nodal voltage magnitude limit (2) and 

branch flow limit (3): 

𝑉2𝑚𝑖𝑛 ≤ 𝑣𝑖
2 ≤ 𝑉2𝑚𝑎𝑥     ∀𝑖 ∈ 𝑁\𝑁0                     (2) 

𝑙𝑖𝑗
2 ≤ 𝛼ℓ𝐼2𝑚𝑎𝑥           ∀𝑖𝑗 ∈ 𝐸                            (3) 

where 𝑣𝑖
2  is the squared nodal voltage magnitude of node 𝑖; 

𝛼ℓ ∈ {0,1} is a binary variable representing the close (𝛼ℓ = 1) 

and open (𝛼ℓ = 0) status of each switch; 𝑁 denotes the set of 

all nodes in the distribution network; 𝑁0 is the set of substation 

nodes (reference nodes). 

B. Power Flow Model 

The DistFlow equations [14] are adopted to capture the 

power flow constraints. 

𝑃𝑖 = ∑ 𝑝𝑖𝑗

𝑖𝑗∈𝐸

− ∑ (𝑝𝑘𝑖 − 𝑟𝑘𝑖𝑙𝑘𝑖
2 )

𝑘𝑖∈𝐸

+ 𝑔𝑖𝑣𝑖
2    ∀𝑖 ∈ 𝑁          (4) 

𝑄𝑖 =  ∑ 𝑞𝑖𝑗

𝑖𝑗∈𝐸

− ∑ (𝑞𝑘𝑖 − 𝑥𝑘𝑖𝑙𝑘𝑖
2 )

𝑘𝑖∈ 𝐸

+ 𝑏𝑖𝑣𝑖
2    ∀𝑖 ∈ 𝑁        (5) 

𝑣𝑗
2 = 𝑣𝑖

2 − 2(𝑟𝑖𝑗𝑝𝑖𝑗 + 𝑥𝑖𝑗𝑞𝑖𝑗) + (𝑟𝑖𝑗
2 + 𝑥𝑖𝑗

2 )𝑙𝑖𝑗
2     ∀𝑖𝑗 ∈ 𝐸     (6) 

𝑙𝑖𝑗
2 =

𝑝𝑖𝑗
2 + 𝑞𝑖𝑗

2

𝑣𝑖
2         ∀𝑖𝑗 ∈ 𝐸                                 (7) 

𝑣𝑖
2 = 𝑣𝑟𝑒𝑓2          ∀𝑖 ∈ 𝑁0                                   (8) 

where 𝑃𝑖 + 𝑗𝑄𝑖 is the complex net power injection at node 𝑖; 
𝑝𝑖𝑗 + 𝑗𝑞𝑖𝑗 is the complex branch power flow of line 𝑖𝑗; 𝑟𝑖𝑗 +

𝑗𝑥𝑖𝑗  is the impedance of line 𝑖𝑗; 𝑔𝑖 + 𝑗𝑏𝑖  is the shunt admittance 

from bus 𝑖 to ground. It has been shown [16] that for practical 

radial networks, the system of equations Eq.(4-8) has a unique 

solution near the flat voltage solution. Therefore, they are 

suffice for the reconfiguration application. 

    Since equation (7) defines a non-convex feasible set, the 

relaxation is typically applied [14]: 

𝑙𝑖𝑗
2 ≥

𝑝𝑖𝑗
2 + 𝑞𝑖𝑗

2

𝑣𝑖
2       ∀𝑖𝑗 ∈ 𝐸                            (9) 

Note that Eq.(9) defines a quadratic cone and can be handled by 

many optimization solvers. 

C. Radiality Constraint 

To enforce the network radiality in the reconfiguration 

problem, the method proposed in [1, 12] is adopted:  

𝛽𝑖𝑗 + 𝛽𝑗𝑖 = 𝛼ℓ    ∀ℓ ∈ 𝐸                            (10) 

∑ 𝛽𝑖𝑗 = 1

𝑗∈𝑁(𝑖)

     ∀𝑖 ∈ 𝑁\𝑁0                     (11) 

𝛽𝑖𝑗 = 0      ∀𝑖 ∈ 𝑁0                          (12) 

𝛽𝑖𝑗 ∈ {0,1}       ∀𝑖 ∈ 𝑁\𝑁0, 𝑗 ∈ 𝑁(𝑖)   (13) 

0 ≤ 𝛼ℓ ≤ 1     ∀ℓ ∈ 𝐸                            (14) 

where 𝛽𝑖𝑗 , 𝛽𝑗𝑖 , 𝛼ℓ  are variables associated with each line 𝑖𝑗 ; 

𝑁(𝑖) is the set of neighbor nodes of 𝑖. It has been shown [12] 

that Eq.(10-14) are sufficient for the radiality for each graph 

component that is connected to one of the reference nodes. 

Therefore Eq.(10-14) together with Eq.(4-8) define a radial 
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network for practical loads. 

 We summarize the final optimization problem as: 

min Network loss: Eq.(1)

s.t. Operating limits: Eq.(2,3)

Power flow: Eq.(4,5,6,8,9)

Network radiality: Eq.(10,11,12,13,14)

     (OP1) 

The decision variables are 𝑝𝑖𝑗 , 𝑞𝑖𝑗 , 𝑙𝑖𝑗
2 , 𝛽𝑖𝑗 , 𝛽𝑗𝑖 , 𝛼ℓ ∀𝑖𝑗 ∈ 𝐸; 

𝑣𝑖
2 ∀𝑖 ∈ 𝑁 . Problem (OP1) is a mixed-integer conic 

programming problem and can be solved by existing solvers in 

a centralized manner. 

III. DISTRIBUTED SOLUTION METHODOLOGY 

In this section, we propose a distributed solution to problem 

(OP1). First, (OP1) will be decomposed into a collection of 

coupled sub-problems. Second, each of the sub-problems is 

solved by an agent (switch) via local computation and 

neighbor-to-neighbor communication. In the following, we first 

define the agents and their communication graph, then we 

present the two-step distributed algorithm. 

A. Definition of Agents and Communication Graph 

We assume each switch has computing capability and can 

communicate with its neighbors. The agents are defined as the 

switches in the network. It is assume that each line has a switch. 

Hence, we do not distinguish the concept of switch, line, and 

agent and refer to them as agent in the rest of the paper. 

We define the neighbors 𝐸(𝑖𝑗) of each agent 𝑖𝑗 as the agents 

that have a node in common with agent 𝑖𝑗. 𝑖𝑗 itself is not in 

𝐸(𝑖𝑗). In other words, let 𝐺 = (𝑁, 𝐸) be the graph representing 

the distribution network, then the communication graph is 

𝐺𝑐 = (𝐸, 𝑀) where if ℓ ∈ 𝐸 and 𝑚 ∈ 𝐸, then ℓ𝑚 ∈ 𝑀 if ℓ and 

𝑚 are incident in 𝑁. In graph-theoretic terms, 𝐺𝑐 is called the 

line graph of 𝐺. 

 

 
Fig. 1.  Example of agents and their communications 

An agent 𝑖𝑗’s set of neighbors 𝐸(𝑖𝑗) is partitioned into four 

subsets based on their and agent 𝑖𝑗 ’s reference directions. 

Denote 𝐸𝑖
𝑓𝑟𝑜𝑚

(𝑖𝑗) as the neighbors that connect to node 𝑖 with 

their “from” nodes being 𝑖. 𝐸𝑖
𝑡𝑜(𝑖𝑗), 𝐸𝑗

𝑓𝑟𝑜𝑚
(𝑖𝑗), and 𝐸𝑗

𝑡𝑜(𝑖𝑗) are 

defined in a similar manner. Fig.1 shows an example 

illustrating the concepts mentioned in this section. There are 

five switch agents in Fig.1(a). The arrows denote the reference 

directions. Fig.1(b) shows the communication graph of the 

network. According to the reference direction, 𝐸(1) = {2,3,4,5} 

can be partitioned into 𝐸𝑖
𝑡𝑜(1) = {2}, 𝐸𝑖

𝑓𝑟𝑜𝑚(1) = {3}, 𝐸𝑗
𝑡𝑜(1) =

{4}, and 𝐸𝑗
𝑓𝑟𝑜𝑚(1) = {5}. 

B. ADMM Release-and-Fix 

    This subsection describes the distributed solution to problem 

(OP1). The state vector of agent 𝑖𝑗  is defined as  𝐱𝑖𝑗 =

[𝑝
𝑖𝑗

, 𝑞
𝑖𝑗

, 𝑙𝑖𝑗
2 , 𝑣𝑖

2(𝑖𝑗)
, 𝑣𝑗

2(𝑖𝑗)
, 𝛽

𝑖𝑗
, 𝛽

𝑗𝑖
, 𝛼ℓ]

𝖳

. Superscripts (𝑖𝑗)  are 

introduced on the voltage variables. This is because the same 

voltage variable 𝑣𝑖
2 is shared by all agents that are incident to 

node 𝑖  and must be distinguished. As a result, agents must 

agree on the value of shared voltage variables: 

𝑣𝑖
2(𝑖𝑗)

= 𝑣𝑖
2(𝑖𝑘)

     ∀𝑖𝑗 ∈ 𝐸, ∀𝑖𝑘 ∈ 𝐸𝑖
𝑓𝑟𝑜𝑚

(𝑖𝑗)            (15𝑎) 

𝑣𝑖
2(𝑖𝑗)

= 𝑣𝑖
2(𝑘𝑖)

      ∀𝑖𝑗 ∈ 𝐸, ∀𝑘𝑖 ∈ 𝐸𝑖
𝑡𝑜(𝑖𝑗)                 (15𝑏) 

𝑣𝑗
2(𝑖𝑗)

= 𝑣𝑗
2(𝑗𝑘)

      ∀𝑖𝑗 ∈ 𝐸, ∀𝑗𝑘 ∈ 𝐸𝑗
𝑓𝑟𝑜𝑚(𝑖𝑗)           (15𝑐) 

𝑣𝑗
2(𝑖𝑗)

= 𝑣𝑗
2(𝑘𝑗)

      ∀𝑖𝑗 ∈ 𝐸, ∀𝑘𝑗 ∈ 𝐸𝑗
𝑡𝑜(𝑖𝑗)                (15𝑑) 

Using the definition of 𝐱𝑖𝑗, problem (OP1) can be written as: 

min
𝐱𝑖𝑗,𝑖𝑗∈𝐸

∑ 𝐜𝑖𝑗
𝖳 𝐱𝑖𝑗

𝑖𝑗∈𝐸

s.t. 𝐱𝑖𝑗 ∈ 𝕏𝑖𝑗       ∀𝑖𝑗 ∈ 𝐸

∑ 𝐀𝑖𝑗𝐱𝑖𝑗 = 𝐛𝑖       ∀𝑖 ∈ 𝑁

𝑗∈𝑁(𝑖)

                 (OP2) 

where 𝕏𝑖𝑗  is a local mixed-integer set whose continuous 

relaxation is convex; 𝑁(𝑖) is the set of neighbor nodes of 𝑖; the 

matrices 𝐀𝑖𝑗  and vectors 𝐛𝑖  are identified through problem 

(OP1) as well as Eq.(15). We refer the first set of constraints in 

(OP2) as local constraints and the second the coupling 

constraints. To solve problem (OP2) in a distributed manner, 

we derive the augmented Lagrangian function by absorbing the 

coupling constraints into the objective function: 

min
𝐱𝑖𝑗,𝑖𝑗∈𝐸

𝐿𝜌     =       ∑ 𝐜𝑖𝑗
𝖳 𝐱𝑖𝑗

𝑖𝑗∈𝐸
+

∑ 𝝁𝑖
𝖳 (∑ 𝐀𝑖𝑗𝐱𝑖𝑗 − 𝐛𝑖𝑗∈𝑁(𝑖)

)
𝑖∈𝑁

+

𝜌

2
∑ ‖∑ 𝐀𝑖𝑗𝐱𝑖𝑗 − 𝐛𝑖𝑗∈𝑁(𝑖)

‖
2

2

𝑖∈𝑁

s.t.                             𝐱𝑖𝑗 ∈ 𝕏𝑖𝑗          ∀𝑖𝑗 ∈ 𝐸

              (OP3)  

where 𝜌 > 0 is called the penalty parameter. Problem (OP3) 

may be solved in a distributed manner by the alternating 

direction method of multipliers (ADMM) [17, 18, 19]. 

The ADMM algorithm can be used to solve convex separable 

problems. However, the presence of binary variables 𝛽𝑖𝑗 , 𝛽𝑗𝑖 in 

(OP3) destroys the convexity. A heuristic remedy to handle 

binary variables was introduced in [17] and the resulting 

modified algorithm is called ADMM Release-and-Fix. The 

modified algorithm proceeds by iterating between two stages. 

The first stage (ADMM-Release) is identical to conventional 

ADMM with the exception of the presence of binary variables. 

The goal of ADMM-Release is to search for feasible binary 

solutions, which are “stable” across multiple runs of 
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ADMM-Release. In order to encourage exploration of new 

binary solutions, the penalty parameter 𝜌  will be gradually 

decreased after a feasible solution is found. In order to force 

convergence to a “stable” solution 𝜌 will gradually increase. 

After a new stable binary solution is found, the second stage 

(ADMM-Fix) fixes the binary solution from ADMM-Release 

and solves the simplified optimization problem with only 

continuous variables. These two stages will alternate until the 

stopping criteria is met. 

The ADMM-Fix step converges slowly. To speed up the 

distributed computation we propose an approximated Newton’s 

method to replace the ADMM-Fix step. 

C. Approximated Newton’s Method 

After a feasible binary solution is found by ADMM-Release, 

the ADMM-Fix problem becomes the same as solving the 

DistFlow equations Eq.(4-8) in a distributed manner with a 

given network configuration. To solve the problem, we first 

linearize Eq.(7) of the DistFlow equations as: 

2𝑝𝑖𝑗
𝜈  𝑝𝑖𝑗 + 2𝑞𝑖𝑗

𝜈 �̃�𝑖𝑗 − 𝑣𝑖
2𝜈𝑙𝑖𝑗

2 − 𝑙𝑖𝑗
2𝜈�̃�𝑖

2

= 𝑝𝑖𝑗
2𝜈 + 𝑞𝑖𝑗

2𝜈 − 𝑙𝑖𝑗
2𝜈𝑣𝑖

2𝜈            ∀𝑖𝑗 ∈ 𝐸      (16) 

where 𝜈  is the iteration number and variables with a tilde  ̃ 
denotes the increment, e.g., 𝑝𝑖𝑗 = 𝑝𝑖𝑗

𝜈 − 𝑝𝑖𝑗 . The resulting 

system of linear equations, namely Eq.(4,5,6,8,16), is denoted 

as 𝐀𝐱 = 𝐛. Next, we propose a distributed algorithm which 

solve this linear system in an iterative manner. 

    We define a new vector 𝐱𝑖𝑗
𝐜  = [𝑝𝑖𝑗 , 𝑞𝑖𝑗 , 𝑙𝑖𝑗

2 , 𝑣𝑖
2(𝑖𝑗)

, 𝑣𝑗
2(𝑖𝑗)

]
𝖳
 with 

continuous variables only. Solving 𝐀𝐱 = 𝐛  is equivalent to 

solving the following unconstrained optimization problem [20]: 

min
𝐱𝑖𝑗

𝐜 ,𝑖𝑗∈𝐸
𝑓 =

1

2
∑ ‖𝐀𝑖𝑗

𝐜 𝐱𝑖𝑗
𝐜 − 𝐛𝑖𝑗

𝐜 ‖2
2

𝑖𝑗∈𝐸
                (OP4)     

where 𝐀𝑖𝑗
𝐜  and 𝐛𝑖𝑗

𝐜  are identified from 𝐀 and 𝐛 by rearranging 

equations and variables accordingly and appending Eq.(15) to 

enforce voltage constraints. Note that 𝐀𝑖𝑗
𝐜  is a constant matrix 

while 𝐛𝑖𝑗
𝐜  depends linearly on 𝐱𝑚

𝐜  for all neighbors, 𝑚, of agent 

𝑖𝑗 (excluding 𝑖𝑗 itself). We would like to solve problem (OP4) 

using Newton’s iteration where the gradient and Hessian matrix 

can be derived as follows: 

∇ℓ𝑓 =  𝐀ℓ
𝐜𝖳(𝐀ℓ

𝐜 𝐱ℓ
𝐜 − 𝐛ℓ

𝐜)           ∀ℓ ∈ 𝐸 

𝐇ℓℓ =  
𝜕

𝜕𝐱ℓ
𝐜 ∇ℓ𝑓 =  𝐀ℓ

𝐜𝖳𝐀ℓ
𝐜             ∀ℓ ∈ 𝐸                (17) 

𝐇ℓ𝑚 =  
𝜕

𝜕𝐱𝑚
𝐜

∇ℓ𝑓 =  −𝐀ℓ
𝐜𝖳

𝜕

𝜕𝐱𝑚
𝐜

𝐛ℓ
𝐜   ∀ℓ, 𝑚 ∈ 𝐸, 𝑚 ∈ 𝐸(ℓ) 

𝐇ℓ𝑚 = 𝟎                      ∀ℓ, 𝑚 ∈ 𝐸, 𝑚 ∉ 𝐸(ℓ) 

However, it is challenging to invert the Hessian matrix 𝐇 of the 

objective function in a distributed manner. Therefore, an 

method to approximate the inverse Hessian is needed. To do so, 

let’s define two new matrices: 𝐃 = 𝑑𝑖𝑎𝑔(𝐃1, 𝐃2, … , 𝐃|𝐸|) 

where 𝐃ℓ = 𝛾𝐇ℓℓ and 𝐁 where  

𝐁ℓ𝑚 = {
(1 − 𝛾)𝐇ℓℓ          𝑖𝑓 ℓ = 𝑚                      

𝐇ℓ𝑚                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (18) 

Now we can approximate 𝐇−1 as follows [20]: 

𝐇−1 = (𝐃 + 𝐁)−1 

= 𝐃−
1
2 (𝐈 + 𝐃−

1
2𝐁𝐃−

1
2)

−1

𝐃−
1
2 

≈  𝐃−
1
2 (𝐈 − 𝐃−

1
2𝐁𝐃−

1
2) 𝐃−

1
2 

= 𝐃−1 − 𝐃−1𝐁𝐃−1                                        (19) 

where the third equation with the approximation sign is 

analogous to the first order Taylor series expansion 
1

1+𝑥
≈ 1 −

𝑥 near 𝑥 = 0. Note than Eq.(19) enables the computation of  

𝐇−1  and the update of local variables to be carried out 

(approximately) locally as follows: 

𝐱𝑖𝑗
𝐜 ← 𝐱𝑖𝑗

𝐜 − 𝐃ℓ
−1∇ℓ𝑓 + 𝐃ℓ

−1 ∑ 𝐁ℓ𝑚

𝑚∈𝐸(𝑖𝑗)⋃𝑖𝑗

𝐃𝑚
−1∇𝑚𝑓     (20) 

Since 𝐁ℓ𝑚 = 𝟎 if 𝑚 ≠ ℓ, 𝑚 ∉ 𝐸(ℓ), the computation of each 

term in Eq.(20) requires only the information of agent 𝑖𝑗 and its 

neighbors. 

    In summary, the approximated Newton’s method has two 

levels of iterations. In the outer iteration, problem (OP4) is 

formed by obtaining 𝐀𝑖𝑗
𝐜 , 𝐛𝑖𝑗

𝐜 , and 𝐱𝑖𝑗
𝐜  from previous iteration; 

in the inner iteration, variables are updated using Eq.(20).   

IV. SIMULATION RESULTS 

This section presents a simulation study to validate the 

proposed distributed algorithm for network reconfiguration. 

We first describe the test system and then discuss the results 

from both centralized and the proposed distributed algorithm. 

In particular, the computation speed of the ADMM algorithm 

and our proposed approximated Newton’s method is compared. 

The distribution test feeder described in [21] is used in the 

simulation. The distribution test feeder is shown in Fig.2 

 
Fig. 2.  16-bus test feeder 

where the dots represent load buses; the solid lines represent 

sectionalizing switches and dashed lines represent tie switches. 

Agents are represented by a red box. The edges of the 

communication graph are represented by red dashed lines. 

Initially, all sectionalizing switches are closed and all tie 

switches are open. The global optimum solution found by the 

centralized algorithm was reported in [21]. The network 
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reconfiguration results of the proposed distributed algorithm 

and the centralize one are shown in Table 1. It can be seen that 

the proposed method found the same global optimum solution 

as that of the centralized algorithm. 
Table.1 Numerical results 

 
Original 

configuration 
Centralized 

Method (MICP) 
The proposed 

method 

Opened 

switches 
5, 11, 16 7, 9, 16 7, 9, 16 

Power loss 

(kW) 
511.4 466.1 466.1 

Loss 

reduction 
- 8.86% 8.86% 

Voltage 

magnitude 

(p.u.) 

Vmax=1.000 

(Bus 1,2,3) 

Vmax=1.000 

(Bus 1,2,3) 

Vmax=1.000 

(Bus 1,2,3) 

Vmin=0.969 

(Bus 12) 

Vmin=0.972 

(Bus 12) 

Vmin=0.972 

(Bus 12) 

In order to evaluate the computation speed of the ADMM 

algorithm and our proposed approximated Newton’s method, 

we conducted testing using 20 different radial network 

configurations of the test system. The tunable parameters are 

𝜌 = 1 for ADMM and 𝛾 = 1.5 for the approximated Newton’s 

method. To make a fair comparison, both of the algorithms 

terminate when the solutions reach the same level of accuracy. 

The computation time are reported in Table 2. As shown in the 

table, the proposed approximated Newton’s method achieves 

roughly 5 times speed up compared to the ADMM. 

Table.2 Speed comparison of ADMM and approximated Newton’s method 

 ADMM Approximated Newton 

Min (second) 3.87 0.64 

Max (second) 18.32 7.66 

Average (second) 10.41 2.05 

V. CONCLUSIONS 

    This paper proposes a distributed algorithm to solve the 

distribution network reconfiguration problem. The proposed 

algorithm can be implemented on a group of switch agents in 

the distribution network, which work collaboratively via 

neighbor-to-neighbor communication to find the optimum 

network reconfiguration. The simulation results show that the 

distributed algorithm correctly finds the global optimum 

solution on a 16-bus distribution test system. In addition, the 

proposed approximated Newton’s method dramatically 

improves the computation speed of the distributed algorithm. 
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