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Abstract— This paper presents a method for the predictive 

maintenance of distribution transformers. That is, a method of 

predicting which transformers are most likely to fail soon. Once 

predicted, such transformers may be subject to maintenance or 

replacement. This practice reduces the costs and increases the 

reliability of power distribution systems. The practice is common 

in transmission systems. In that domain, physical methods such as 

dissolved gas analysis see fantastic results. Data-driven techniques 

utilizing DGA data are also popular. But such methods are cost 

prohibitive for distribution systems. Instead, this paper proposes 

to utilize a data driven framework for the task which only uses 

readily available data. Such data include the transformers' 

specification, loading, location, and weather-related information. 

Such data inspire the use of two suitable machine learning 

algorithms. The first is random forests. The second is the Random 

Undersampling with AdaBoost (RUSBoost) algorithm. These 

algorithms are tested on over 700,000 distribution transformers in 

Southern California. This test finds that both algorithms 

outperform the current state of practice. Further, it finds that the 

RUSBoost algorithm performs better than the Random Forest. 

 
Index Terms— Data-driven method, distribution transformer, 

predictive maintenance, Random forest. 

I. INTRODUCTION 

An aging infrastructure is the undoing of a reliable electric 

grid. Unhealthy hardware can result in power outages, raise the 

costs of power, and start fires. Equipment failure caused 15% of 

electric disturbances reported to Department of Energy of the 

United States in 2015. The current electric transmission and 

distribution infrastructure in the United States are aging. Many 

electric grid equipment are approaching or have surpassed their 

useful life. 70% of power transformers are 25+ years old. 60% 

of circuit breakers are 30+ years old, and over 60% of 

distribution poles are 30-50 years old. This far surpasses their 

useful lives of 25 years, 20 years and 50 years [1]. One critical 

hardware component susceptible to failure is the distribution 

transformer. There are many ways for a transformer to fail. For 

 
Manuscript received June 25, 2018.  

Authors are with the Department of Electrical and Engineering, University 

of California, Riverside, CA 92507, USA (e-mail: fkabi001@ucr.edu; 
bfogg002@ucr.edu; nyu@ucr.edu ).  

 

example, high ambient temperatures and excessive loading may 

damage a transformer. A deficient power supply or exposure to 

a hostile environment can destroy one. Something as simple as 

poor workmanship can see a transformer's demise [2]. Yet the 

most common cause of transformer failure is age. The average 

age of the distribution transformers in the United States is even 

higher than the transformers in the transmission system. Thus, 

proper maintenance of distribution transformers is essential.  

Current equipment maintenance strategies fall into three 

main categories. The first is 'run-to-failure'. In this category, 

interventions occur only after a transformer has already failed. 

The second category is preventive maintenance. Here, 

maintenance actions are carried out according to a planned 

schedule. The final category, predictive maintenance, is the 

most cost effective. Predictive maintenance attempts to assess 

the health conditions of each device. This allows for the 

advanced detection of pending failures [3]. The detection, in 

turn, allows for targeted maintenance to the devices most in 

need. Currently, electric utilities practice run-to-failure 

maintenance management for distribution transformers. 

Employing predictive maintenance instead would be beneficial. 

It would help to achieve more reliable system operations and 

reduce the number of sudden power supply interruptions. These 

benefits are shared by both predictive maintenance and 

preventative maintenance. But predictive maintenance further 

reduces costs by avoiding unnecessary maintenance operations.  

Existing predictive maintenance research and practice focus- 

es on large power transformers. The methods assess trans- 

former health via dissolved gas analysis (DGA). DGA is a 

well-known diagnostic technique in the industry [4]. It works 

by monitoring the concentration of certain gases in the insul- 

ation oil of a transformer. The concentration of the dissolved 

gases is characteristic of the insulation's decomposition. Gases 

used in DGA include hydrogen, methane, ethane, acetylene, 

ethylene, carbon monoxide and carbon dioxide. DGA has also 

been combined with data-centric machine learning techniques. 

Tested techniques include artificial neural networks (ANN) 

[5]–[7], and fuzzy logic [7]. Support vector machines, the 

extreme learning machine (ELM) and deep belief networks 

have been employed as well [8]–[10]. These methods identify 

patterns in historical DGA data to assess transformer health. 

Data Driven Predictive Maintenance of 

Distribution Transformers 

Farzana Kabir, Brandon Foggo, Student Member IEEE and Nanpeng Yu, Senior Member, IEEE 

mailto:fkabi001@ucr.edu;%20bfogg002@ucr.edu
mailto:fkabi001@ucr.edu;%20bfogg002@ucr.edu
mailto:nyu@ucr.edu


            

           

    2018 China International Conference on Electricity Distribution (CICED 2018)               Tianjin, 17-19 Sep. 2018 

 

 

 

CICED2018                                                            Paper No xxx                                                                          Page2/5 

Many such studies formulate the failure prediction problem as a 

supervised classification task. Results of such methods are 

excellent. An evaluation of 15 standard machine-learning algo- 

rithms was performed in [4]. The authors of this study separated 

their results based on false alarm rate. With a false alarm rate of 

1%, the researchers were able to detect between 30% and 50% 

of faulty transformers.  When allowed a false alarm rate of 

10%, they could detect 80% to 85% of faulty transformers.  

DGA however, requires semiconductor gas sensors on each 

transformer. Installing these is feasible for transmission 

systems which do not have many transformers. High voltage 

power transformers make up < 3% of all transformers in the 

United States. But distribution systems have far more. Thus, 

these installations are prohibitively expensive for distribution 

systems. But there are ways of predicting transformer failure 

which are less direct. For example, environmental conditions 

play a causal role in transformer failure. Thus, data related to 

these conditions contain information about a transformer's 

health. This is verified somewhat in reference [4]. The 

reference supplements DGA data with transformer specific 

features like age and nominal power. Such data are low cost and 

readily available. It thus enables cheap predictive maintenance. 

This study focuses on predictive maintenance of distribution 

transformers. Machine learning techniques are applied to model 

the dependency between low cost data and transformer health. 

The random under-sampling with boosting (RUSBoost) 

algorithm is adopted to handle data imbalance. The unique 

contribution of this paper is that it just uses low-cost 

transformer-specific and environmental related features. 

The rest of this paper is organized as follows: In Section II, 

an overall framework of the failure prediction problem is 

presented. Section III describes the technical methods used in 

the study. Section IV presents the case study by describing the 

dataset and application of the machine learning algorithms on 

the dataset. The performance of the failure prediction models is 

reported in Section V. Finally, Section VI concludes the paper. 

II. FRAMEWORK 

The aim of this study is to predict if a distribution transformer 

will fail in a given horizon. Such prediction is performed via 

transformer-specification, loading, location and weather related 

data. The dataset is first divided by year into a training set, a 

validation set and a test set. Transformer failure information 

within each period acts as binary label. The convention that a 1 

indicates failure and a 0 indicates a non-failure is used. Thus, 

the failure prediction problem is formulated as a supervised 

binary classification task. The dataset is denoted as (𝑿, 𝑦). This 

consists of pairs (𝒙𝑖 , 𝑦𝑖) of features 𝒙𝑖  and failure labels 𝑦𝑖 .  

As with most real data, there are a few challenges involved in 

dealing with this dataset. First, there is missing data. Thus, imp- 

uting those will be necessary. Second, the dimensionality of the 

data involved in this study is high. Thus, feature selection is 

important for obtaining better learning performance. Third, the 

dataset is of mixed type, i.e. the features can be either continuo- 

us or categorical. Thus, a tree-based model may be useful. Last- 

ly, transformer failures are rare events. This creates an imbalan- 

ce in the dataset. As a result, traditional algorithms can create 

suboptimal classification models [11]. Random under sampling 

with boosting is employed to ease the class imbalance problem. 

    The study focuses on keeping the number of false predictions 

small. If the number of false predictions is high, then the cost of 

their premature replacement will exceed the cost of their sud- 

den failure. As a result, the ‘match in top N’ (MITN) metric is 

suitable for assessing the quality of a given method. To calcula- 

te this metric, predicted failures are first ranked by likelihood. 

The N transformers deemed most likely to fail are then placed 

in a set L. Transformers that ended up failing in the given 

horizon are then placed in a set F. The MITN metric is then the 

carnality of 𝐿⋂𝐹. The work flow is summarized in Fig. 1. 

III. TECHNICAL METHODS 

A. Data Preprocessing 

1) Treating Missing Values 

The Existing methods for dealing with missing values can be 

divided into two categories. The first category simply removes 

instances with missing data. But this has drawbacks such as 

substantial data loss and biased instance sampling. The second 

category attempts to instead impute missing data [12]. Some 

popular single imputation strategies are mean imputation, 

hot-deck imputation, and predictive imputation [12]. In the 

first, missing values are replaced by the mean of the observed 

values in that variable. In the second, missing values are 

replaced by "nearby" data values from the same dataset. The 

third encompasses more sophisticated procedures for handling 

missing data. These methods treat a missing variable as a new 

classification or regression variable. All other relevant 

variables become predictors of this new variable. Commonly 

used techniques are decision trees, artificial neural networks, 

and random forests. However, single imputation methods might 

ignore the variance associated with the imputation process. 

 
Fig. 1: Workflow for failure prediction of distribution transformers 

 
Fig. 1 Work flow for failure prediction of distribution transformers. 

 
Fig. 2 Work flow for failure prediction of distribution transformers. 
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Multiple imputation schemes can address this problem [13]. 

Using a random forest as a prediction model for imputation is 

a promising approach. It can handle mixed data types, high 

dimensionality, and address complex interactions. A random 

forest also forms a multiple imputation scheme intrinsically. 

This is due to the averaging of the many trees found in the 

forest. The MissForest method [14] is an iterative imputation 

method based on random forests. It has been shown to 

outperform well known methods such as parametric MICE 

[15]. Imputation error can be determined from the out-of-bag 

error estimates of the random forests.    

2) Feature Selection 

High dimensional data has always presented challenge to 

existing machine learning methods. Feature selection reduces 

the dimensionality by choosing a subset of the features. This 

helps our methods perform better. It increases learning 

accuracy, lowers computational costs and improves model 

interpretability. Supervised feature selection methods are 

chosen to use in this study. Existing methods can be classified 

into filter models and wrapper models [16]. 

In filter methods, the relevancy of each feature is ranked. The 

highly ranked features are selected for inclusion in the dataset. 

Filter methods can also rank feature subsets instead of ind- 

ividual features. Popular ranking metrics include the Pearson 

correlation coefficient (PCC) and mutual information. The 

PCC is calculated easily from the dataset. Mutual information, 

however, must be estimated. A common nonparametric estim- 

ation method follows from nearest neighbor distances [17]. 

Wrappers models use an interaction between feature selecti- 

on and a predetermined classification algorithm. These models 

include sequential forward and backward selection [16]. In seq- 

uential forward selection, features are added until classification 

performance converges. In sequential backward selection, feat- 

ures are removed instead of adding. Though wrapper methods 

have better performance, they are computationally expensive. 

Decision trees inherently estimate the suitability of features. 

The features found at the top of a binary decision tree are the 

best at separating instances for the task at hand. This 

characteristic can be exploited for feature selection. 

B. Learning Algorithms 

The random forest classification algorithm [18] is used in 

this study. A random forest is an ensemble of decision trees. 

Each tree is formed by randomly sampling features iteratively.  

1) Dealing with Imbalanced Dataset 

When a dataset is imbalanced, learning algorithms will 

under-perform on the minority class. Data re-sampling and 

boosting are two techniques which ease the data imbalance 

problem. Under sampling removes examples from the majority 

class. It has the benefit of reduced training time due to reduced 

number of training data points. But it has the drawback of losi- 

ng useful information. Boosting builds an ensemble of models 

by assigning higher weights to difficult instances. In imbalanc- 

ed problems, these difficult instances are the minority example- 

es. Predictions are then made using a weighted average of each 

of the separate models. Random undersampling with Boosting 

(RUSBoost) [19] integrates these methods. Instances are remo- 

ved randomly from the majority class until balanced. An itera- 

tion of the boosting method is then performed. The under- 

sampled training data is then re-sampled according to the ins- 

tance's assigned weight. This process is repeated for several ite- 

rations. RUSBoost with the AdaBoost.M.2 boosting algorithm 

[20] is adopted in this study. The Random forest classifier is 

selected as the base learner in the AdaBoost.M.2 algorithm. 

IV. CASE STUDY 

Predictive maintenance is performed for one of the largest 

utility companies, Southern California Edison. This company's 

distribution transformers are becoming old. 35% of them were 

approaching or had surpassed the useful life of 35 years by 

2016. Thus, employing predictive maintenance to these 

transformers would be beneficial for the company. The 

prediction horizon in this study is two years. 

A. Dataset Description 

The predictive maintenance dataset contains over 700,000 

transformers in the Los Angeles, Mono, Fresno, Riverside, San 

Bernardino, Orange, Kern, Tulare and Ventura counties of 

California. The dataset covers the years 2012 to 2016. There are 

42 categorical and 30 continuous variables. Features fall into 

four broad categories. The first is data related to transformer 

specification. These include line and phase voltages, KVA 

ratings, ages, manufacturers, models, subtypes, primary ratings, 

overhead/underground locations, secondary voltages, used/new  

condition indicators, main line indicators and commercial use 

Indicators.  The second type is data related to transformer 

loading. These include average loading (%), peak loading (%), 

and the percent of time the transformer is overloaded. The third 

type is data related to location. These include longitude, 

latitude, district, region, fire zone indicator, corrosion zone 

indicator, and flood zone indicator. The fourth type is data 

related to weather.  In addition to these, four new features were 

created for the study. The first is denoted as 'primary category'. 

It is a bucketing of the transformer ratings into three categories 

TABLE I 

 THRESHOLD VALUES FOR WEATHER-RELATED VARIABLES 

Symbol Quantity 

Temperature (high) 75, 85 and 95 
Temperature (low) 

Humidity 

50, 40 and 30  

75, 85 and 95 

Wind speed 6.5, 10 and 15 
Resultant wind speed 6, 10 and 15 

Rain 0.01, 0.07 and 0.15 
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- low, medium and high. The last three are groupings of KVA 

ratings, manufacturers, and models by survival rate.  

Weather related variables include temperature (oF), relative 

humidity (%), rain (inch), wind speed (mile/hour), resultant 

wind speed (mile/hour) and solar radiation(𝑊ℎ𝑚−2). Hourly 

weather-related data are available from 24 weather stations. 

Statistics of the weather-related variables from each station 

were used as features. The statistics used were the maximum, 

minimum, average, and standard deviation. Three new features 

were created for each weather-related variable. These are 

counters of exceedance beyond three threshold values. Three 

similar additional features were created for temperature. These 

count the number of times temperature falls below the three 

threshold values. The thresholds values are provided in Table I. 

Some extra information is available which was not directly 

used as features. These are the reason for removal and the date 

of removal. Some transformers failed due to reasons which 

cannot be predicted. For example, a transformer may fail due to 

a lightning surge or an animal attack. These transformers are 

given a 'transformer failure' label of 0. The removal date helps 

divide the dataset into training, validation and test sets.  

B. Data Preprocessing 

Training, Validation and Test Set 

First, the dataset is divided by year into a training, validation 

and test dataset. Data from 2012-2014 are divided into a 

training set and a validation set. The training set contains 70% 

of the instances and a validation set contains the other 30%. 

Both the training set and the validation set contain two sets of 

data. One set is for 2012-2013 and the other is for 2013-2014. 

Only one feature age, changes between these two sets, and it 

only changes by 1. However, the label may change as well. 

Each changed label will introduce a tomek link- a minimally 

distanced nearest neighbor pair with opposite class [21]. Tomek 

links create unwanted overlapping between classes. Therefore, 

transformers that failed in 2014 are not included in the 

2012-2013 set. Data from 2015-2016 work as the test set.  

1) Dealing with Missing Values 

Some attributes have values missing at random in the 

predictive maintenance dataset. The rate of missing data is in 

the range of 1%-20%. Weather related variables are imputed 

via the closest weather station. For the rest of the missing data, 

the MissForest method is used. This method far outperformed 

artificial neural network for this task. 

2) Feature Selection 

Several feature selection methods are used in this study. The 

first are sequential forward and backward selection. The second 

is Mutual Information based filtering. The Top n features of a 

binary decision tree are also selected. Some selected features 

were common to all of these methods. The final set of features 

is selected empirically using a random forest classifier. The 

final set has16 features. The features are listed in Table II. 

C. Application of Learning Algorithm 

A random forest and a RUSBoost classifier are trained on the 

training set. To tune the hyperparameters of the random forest 

model, a grid of ranges is defined first. The validation set per- 

formance is then computed by sampling uniformly over this gr- 

id. The MITN metric is calculated for the validation and test set 

with 𝑁 = 1000 for both model selection and results reporting. 

V. RESULT AND ANALYSIS 

The variable importance measures for the input features are 

calculated. They are plotted in Fig. 2. The transformer's age 

was found to be the most influential variable. This confirms  

intuition. Other important features are peak and average 

loading, transformer model, and manufacturer group. This 

signifies the impact of transformer loading and workmanship.  

The MITN is calculated for the Random forest and 

RUSBoost algorithm. Both algorithms outperform the traditi- 

onal age-based rule. Comparison of the Random forest and the 

RUSBoost algorithm is shown in Table III. The age-based rule 

has a match rate of 50 in top 1000 transformers. The match rate 

of the Random Forest Model is 462 in the validation set and 312 

in the test set. RUSBoost slightly outperformed the Random 

forest algorithm. It had a match rate of 471 and 359 in the 

validation and test datasets respectively. This makes RUSBoost 

our preferred algorithm in the task of failure prediction. 

The achieved level of performance is acceptable for 

distribution transformers. The achieved MITN outweighs the 

TABLE II  
LIST OF SELECT VARIABLES 

Symbol Quantity 

Transformer- 

specification  

 

Age, KVA, Manufacturer group, Model group, 

Overhead/Underground indicator, Subtype, Primary 

rating group, Used/New condition indicator 
Loading  Average loading, Peak loading, (%) time overloaded 

Location  Region, Corrosion zone indicator 

Weather  Rain over Th2, Humidity over Th2, Wind speed over Th3 

 

0
0.2
0.4
0.6
0.8

1
1.2

A
ge

M
o

d
el

 G
ro

u
p

P
ea

k 
Lo

ad
in

g

M
an

u
fa

c.
 G

ro
u

p

A
ve

ra
ge

 L
o

ad
in

g

(\
%

) 
O

ve
rl

o
ad

e
d

R
eg

io
n

Su
b

ty
p

e

R
ai

n
 T

h
1

H
u

m
id

it
y 

Th
1

Fig. 2: Variable importance measures from base random forest classifier 
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cost of installing gas sensors for every transformer. It is noted 

that there is some imprecise labeling of the transformers. This is 

evident in the fact that several "reasons for removals" were 

recorded as "other". With more precise labeling, higher income 

performance may be achieved. Overall, it is concluded that the 

machine learning based predictive maintenance utilizing the 

selected features far outperforms the traditional age-based 

method and can be used for failure prediction.  

VI. CONCLUSION 

In this paper, the problem of failure prediction of distribution 

transformers is addressed where traditional dissolved gas 

analysis is not economically feasible. The problem of 

predicting distribution transformer failure is formulated as a 

binary classification problem. The proposed method is very 

cost effective as only readily available and low-cost transfo- 

rmer-specification, loading and weather-related data are used. 

Both random forecast and Random undersampling with boos- 

ting (RUSBoost) algorithm are tested through the large-scale 

case study. 'Match in top 1000' was used the performance metr- 

ic. RUSBoost slightly outperforms random forest making it our 

preferred algorithm for predicting distribution transformer fail- 

ures. Both random forest and RUSBoost algorithm outperform 

traditional age-based prediction technique by a good margin. 

There are some drawbacks in our study. Failure information 

of the transformers were only available for four years. Data 

spanning longer period of time could better help the machine 

learning algorithm capture the trend in transformer failures. 

The loading related data were available for only one year. 

Availability of historic load information can improve the 

classifier performance as it is an important feature in modeling 

failure of the transformers. Rigorous record keeping of the 

distribution transformers information can reduce occurrence of 

missing values in the dataset and therefore improve the 

classifier performance. At last, recording the exact reasons of 

transformer removal can help alleviate label noise problem.  

In the future, we plan to build machine learning models to 

estimate remaining lifetime of the distribution transformers. 

Accurate estimation of remaining useful life of transformers 

could facilitate the development of more cost-effective 

maintenance strategy for electric utilities. 
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TABLE III  
COMPARISON OF AGE-BASED, RANDOM FOREST AND RUSBOOST MODEL 

IN 'MATCH IN TOP 1000' METRIC 

Set Age-based Random Forest RUSBoost 

Validation 50 462 471 

Test 50 312 359 

 


