
Discovering and Labeling Power System Events in
Synchrophasor Data with Matrix Profile

Jie Shi, Nanpeng Yu, Eamonn Keogh
University of California Riverside

Riverside, California 92521
Email: nyu@ece.ucr.edu

Heng (Kevin) Chen
Commonwealth Edison

Oakbrook Terrace, Illinois 60181
Email: heng.chen@comed.com

Koji Yamashita
Michigan Technological University

Houghton, Michigan 49931
Email: kyamashi@mtu.edu

Abstract—An increasing number of phasor measurement units
(PMUs) are being installed to improve power systems’ reliability
and visibility throughout the world. Due to the high sampling
speed, PMUs generate a large volume of streaming synchrophasor
data. This huge dataset calls for robust and efficient data analytic
tools to discover and label system events, which will greatly
enhance the stability of power systems. In this work, we introduce
a novel event discovery and labeling framework based on matrix
profile. This framework is model-free, fast, scalable, and only
requires one user-defined parameter. Since matrix profiles are
built by measuring the similarities between subsequences of a
time series, our approach has great potential in automatically
labeling the system events in the synchrophasor data. Case
studies are carried out on real-world PMU data to validate the
effectiveness of the proposed framework.

Index Terms—PMU, synchrophasor data, anomaly detection,
matrix profile, time series.

I. INTRODUCTION

Phasor measurement units (PMUs) are devices that provide
time-synchronized measurements of different variables in a
power grid. PMU data are also called synchrophasor data
and are taken at high temporal resolutions such as 30 to 60
records per second [1]. This sampling speed is a significant
improvement over the traditional supervisory control and data
acquisition (SCADA) system which takes measurements every
2 to 4 seconds. Thanks to the fast streaming speed and high
quality of synchrophasor data, the broad deployment of PMUs
has greatly enhanced power systems’ visibility and reliability.
For example, PMUs have been utilized to improve wide-
area situational awareness [2], state estimation [3], system
protection [4], and control [5]. Meanwhile, the high sampling
frequency of PMUs brings the grid operators unprecedented
quantities of data describing the system conditions with high
temporal resolution. This huge streaming dataset calls for
robust and efficient data analytic tools to discover hidden infor-
mation in a timely manner. Valuable data-driven applications
can be built upon these tools, thus benefiting the power system
operation. In this work, we investigate the utilization of a novel
data analytic tool called matrix profile (MP) to discover and
label system events in real-world PMU data.

Event (fault, anomaly, or disturbance) discovery based on
PMU data has been extensively studied in the past decade.
The existing approaches can be divided into model-based
methods and model-free methods. Many of the model-based

approaches develop estimates of the power system states based
on the given model information. An anomaly is detected if the
differences between raw measurements and the estimates are
beyond certain thresholds. See [6] for an example. The perfor-
mance of model-based methods heavily relies on the accuracy
of model parameters. This dependency renders them less
effective in real-world applications where model information
is typically noisy [7]. To the best of the authors’ knowledge,
most commercial software does not use model-based methods
for anomaly detection. In addition, these approaches do not
provide useful information for further labeling purposes.

As a consequence, a lot more research efforts paid attention
to the model-free analyses. The model-free methods can be
further categorized into two classes, which are signal process-
ing based approaches and machine learning based approaches.
The key idea of signal processing based approaches is to moni-
tor the coefficients of certain basis functions obtained through,
for example, wavelet analysis [8], [9], [10]. A system event is
detected if the ranges of certain coefficients (or some indices
calculated from these coefficients) exceed the thresholds. This
mechanism can work well with proper selection of wavelets,
time and frequency resolution, threshold, etc. However, power
system events are complex and diverse, making it difficult
to select proper settings for different scenarios. Still, many
researchers are working on these methods because they extract
features from the raw event data that can be very useful for
further clustering and labeling (classification).

The machine learning based approaches can be further
divided into supervised learning methods and unsupervised
learning methods. Typical supervised learning methods used
in anomaly detection include decision trees [11], K-nearest
neighbor [12], support vector machines [13], extreme learning
machines [14], and artificial neural networks [15]. These
works usually discover systems events and classify them
into different groups, which require a sufficient amount of
labeled training data. In practice, however, there are two
obstacles. First, most PMU datasets are still weakly labeled
since manually labeling them would yield considerable labor
cost. Moreover, the low frequency of system events over
the entire time horizon makes the training data extremely
unbalanced. These two issues need to be addressed before
supervised learning methods can be effectively employed in
real-world applications. The unsupervised learning methods,



on the other hand, do not require any labeled data. Previous
works in this category include characteristic ellipsoid based
detection [16], principal component analysis (PCA) with linear
regression [17], ensemble of three basic detectors [18], time
series modeling [7], and K-means clustering [19]. However,
these methods also have limitations. [16] is difficult to apply in
an online environment due to the requirement of solving a non-
convex optimization problem. [17], [18], and [7] only detect
the anomalies without directly providing sufficient information
for labeling them. [19] requires the specific number of clusters
to be predefined.

An ideal event discovery and labeling algorithm for PMU
data should be model-free, parameter-free, and capable of
mining weakly labeled data. In this paper, we propose a
novel event discovery and labeling framework based on matrix
profile to address the above mentioned research needs.

The advantages of the proposed approach are summarized
as follows:

• Our framework is model free, almost parameter-free, and
capable of mining weakly labeled data.

• Our framework has great potential in automatically label-
ing the power system events in PMU data.

• Our framework is fast, scalable, and can be implemented
in an anytime fashion.

• For streaming PMU data, our framework supports effi-
cient incremental learning, which allows online imple-
mentation.

Equipped with all these merits, our framework has great
potential in discovering and labeling the power system events
with a large volume of streaming PMU data.

The rest of the paper is organized as follows: Section II
describes the background of a matrix profile algorithm and
its mechanism in anomaly detection. Case studies are carried
out in Section III to validate the effectiveness of the proposed
framework. The conclusion is stated in Section IV.

II. BACKGROUND OF MATRIX PROFILE

In this section, we present the basic background of a matrix
profile and its mechanism of event discovery and labeling in
PMU data. Knowing that a general matrix profile is defined
on two separate time series [20], we only focus on a special
setting where both the time series are exactly the same. The
resulting matrix profile is formally called self-join matrix
profile. Without raising any confusion, we will hereby refer to
self-join matrix profile as matrix profile, omitting “self-join”.

Briefly speaking, the matrix profile of a time series is
a vector of Euclidean distances between all z-score scaled
subsequence of that time series and their nearest neighbors.
This statement will become more concrete and clear after we
introduce the necessary notations and supporting definitions.
The intuition behind a matrix profile is simple and straightfor-
ward, i.e., measuring the similarities between different parts in
a time series. We elaborate on the specific concept and details
of a matrix profile in the following subsection.

A. Notations and Definitions
This work focuses on mining time series data. We begin by

giving a formal definition of time series.

Definition 1. A time series T is defined as a sequence of
real-valued numbers indexed in time order.

The properties of a complete time series are not our primary
concern. We are interested in studying the patterns of relatively
small segments of a time series. We call these segments
subsequences.

Definition 2. A subsequence Ti,m ∈ Rm of a time series T is
a continuous subset of T , which starts at the ith element and
ends at the (i+m− 1)th element of T .

There can be a large number of different subsequences in
a given time series, especially when m is much smaller than
the length of original time series. To better describe the set of
all these subsequences, we introduce the following definition.

Definition 3. An all-subsequences set SA of a time series T
is defined as an ordered set of all possible subsequences in
T . Specifically, these subsequences are sorted in ascending
order with respect to the indices of their starting elements.
SA = {T1,m, T2,m, · · · , Tn−m+1,m}, where m is the length
of any subsequence and n is the length of original time series.

For any subsequence in a time series, we can calculate its
distance to all other subsequences in the same time series. The
results are stored in a vector that is named as distance profile.
Below is the formal definition of distance profile.

Definition 4. A distance profile DT
i ∈ Rn−m+1 between

a time series T and its subsequence Ti,m is a vector that
stores d(Ti,m, Tj,m),∀j ∈ {1, 2, · · · , n−m+ 1}, where d(·)
calculates the Euclidean distance between z scores of two
subsequences.

A subsequence Tj,m is defined as the nearest neighbor
of subsequence Ti,m if d(Ti,m, Tj,m) = min(DT

i ). Note
that closely located subsequences are very similar in shape,
thus they typically have the lowest distances. Therefore, an
exclusion zone of length m is set up to filter out these trivial
candidates. We define the subsequences in this exclusion zone
as trivial neighbors of Ti,m.

Definition 5. A subsequence Tj,m is defined as a trivial
neighbor of Ti,m if i− m

2 ≤ j ≤ i+ m
2 .

Now we are ready to introduce the formal definition of
matrix profile as follows:

Definition 6. A matrix profile PT ∈ Rn−m+1 of time series
T is a vector that stores the Euclidean distances between each
subsequence Ti,m and its nearest non-trivial neighbor. Specif-
ically, PT = [nnnt(D

T
1 ), nnnt(D

T
2 ), · · · , nnnt(D

T
n−m+1)],

where nnnt(D
T
i ) returns the smallest distance between Ti,m

and its non-trivial neighbors.

This vector of distance values is named matrix profile
because one can obtain it by calculating all the distances



10

0

10
M

ag
ni

tu
de

Sample time series

0 250 500 750 1000 1250 1500 1750
Time stamp

2.5

5.0

7.5

Di
st

an
ce

Matrix profile

Fig. 1: Sample time series and its matrix profile.

between any pair of subsequences in a time series and put the
results in a distance matrix, where the matrix profile is derived
by extracting the smallest distance that is not between trivial
neighbors out of each row. This simple brute force approach
has a time complexity of O(n2m) and large overhead caused
by z-score scaling1. Fig. 1 shows a sample time series of 2,000
data points and its matrix profile calculated with m = 50.
In the next subsection, we briefly introduce a more efficient
algorithm called scalable time series anytime matrix profile
(STAMP) [20]. The matrix profile only stores information of
the ‘smallest distances’. It does not directly locate the nearest
non-trivial neighbors. In order to fix this issue, a companion
vector called matrix profile index is introduced.

Definition 7. A matrix profile index IT ∈ Rn−m+1 of time
series T is a vector that stores the index of the nearest
non-trivial neighbor of each subsequence. Formally, IT =
[IT1 , I

T
2 , · · · , ITn−m+1], where ITi = j if d(Ti,m, Tj,m) =

nnnt(D
T
i ).

With access to the matrix profile index, we are able to locate
the nearest non-trivial neighbor of any subsequence in a single
query. The STAMP algorithm [20] discussed below is designed
to output both matrix profile and matrix profile index of given
input time series.

B. STAMP

STAMP is an efficient matrix profile calculation algorithm
developed by research teams from the University of California
Riverside and the University of New Mexico [21]. It is fast and
simple to use. We provide the basic procedures of STAMP in
Algorithm 1 and refer the readers to [20] for implementation
details. The MASS function in line 4 computes the distance
profile for a given subsequence. It is the key procedure in
STAMP and demands the most computational resources. The
ElementWiseMin function updates PT and IT by comparing
PT with DT

i elementwisely. After obtaining all the distance
profiles of subsequences, the matrix profile (index) is simply
an ordered combination of minimum elements (locations)
taken from each distance profile. Note that the only parameter
we need to set for the entire algorithm is m, making STAMP
easy to use in practice.

1The z-score scaling of subsequences requires either O(nm) time plus
O(nm) space overhead or O(n2m) time overhead for the brute force
algorithm.

Algorithm 1: STAMP

1 m← predefined value by user, n← length of T ;
2 PT ← [inf, · · · , inf ], IT ← [0, · · · , 0];
3 for each subsequence Ti,m in T do
4 DT

i ← MASS(Ti,m, T,m);
5 PT , IT ← ElementWiseMin(PT , IT , DT

i , i);

6 return PT , IT

The fundamental advantage of STAMP relies on its in-
triguing usage of fast Fourier transform (FFT) in MASS,
which leads to a time complexity of O(n2 log(n)) for the
entire algorithm. Specific description, implementation details,
and complexity analysis of MASS are presented in [22]. The
core idea is to exploit the similarities between convolution
operation and Euclidean distance calculation. Some may ar-
gue that the reduction of time complexity from O(n2m) to
O(n2 log(n)) is inconsequential. For small time series and
small m, it is true that the difference between STAMP and
the brute force approach is insignificant. However, as m and
n grow, STAMP performs far better than its brute force
opponent. For example, if we are processing a time series with
n = 50, 000 and m = 1, 000, we would expect STAMP to be
64 times faster even without considering the heavy overhead
of the brute force approach. Moreover, experiments carried out
in [20] suggest the empirical run time of STAMP is roughly
O(n2) instead of O(n2 log(n)) due to high efficiency of the
existing FFT algorithms.

C. Mechanism of Event Discovery and Labeling

Fundamentally, using the matrix profile to discover and label
system events in PMU data exploits the similarities of signa-
tures created by similar events (disturbances). In this study, a
signature is defined as a subsequence of PMU measurement
time series corresponding to a system event (disturbance). Our
mechanism of anomaly detection is highly dependent on the
following two facts:

• First, the same type of system events usually have similar
signatures in the time series.

• Second, signatures caused by the same type of system
events have significantly lower euclidean distances in the
matrix profile.

The first fact is straightforward and serves as the cornerstone
of shape-based data analyses for event clustering [19] and
classification [23] in power systems. The second fact is not
apparent and might be somehow counterintuitive. Without
occurrence of events, small subsequences of the frequency,
voltage magnitude, and current magnitude time series are rel-
atively steady and usually dominated by the DC components.
Thus, the euclidean distances between them would be very
small in theory. However, the real-world PMU data are always
noisy [24], making these subsequences significantly different
in terms of distance after z-score scaling. The signatures
created by the same type of system events usually contain
much more unique non-DC components, hence they remain



close even after z-score scaling. Therefore, the corresponding
points of system events in the matrix profile are, in general,
significantly smaller than that of normal conditions. By ex-
ploiting this property, the events can be automatically detected
by locating the lowest points on the matrix profiles. This will
be illustrated explicitly in the case study section. Meanwhile,
their closest neighbors can be found simultaneously through
the matrix profile index. This information can be used to
cluster the system events directly. More importantly, given
the small number of labeled data, our framework is able to
automatically label the new system events by assigning them
to their nearest neighbors.

III. CASE STUDY

In this section, we show how to use a matrix profile
to discover and automatically label power system events in
real-world PMU data. All numerical studies are carried out
in Python environment on a Dell desktop with a CPU of
Intel Xeon E3-1226 v3 @ 3.30GHz. We start by describing
our PMU dataset in the first subsection. The procedures of
event discovery and labeling are discussed in the second
subsection. Due to space limitation, only two case studies of
generator and line tripping events are presented. Note that our
proposed framework is very general and can be applied to
discover a wide range of disturbances and events. In the last
subsection, we show that the computation of the matrix profile
is fast, scalable, and can be implemented in an anytime and
incremental fashion (STAMPI [20]).

A. Data Source and Preprocessing

Our real-world PMU data have a reporting frequency of
30Hz, which contain two generator tripping events and two
line tripping events. The two generator tripping events oc-
curred consecutively and were therefore stored in the same
file. The two line tripping events were recorded in two separate
files. To show the matrix profile’s ability to discover and
automatically label events, we need at least two events from
the same class. Thus, for the line tripping case, we concatenate
the two time series into a single time series. Two modifications
on the original datasets are made during the concatenation:

• First, the joint gap is smoothed out by aligning the
terminal point of the preceding time series with the initial
point of the following time series.

• Second, we add an additional small white noise to the
concatenated time series such that the distances between
normal subsequences from both parts of the time series
are at the same level.

Now, we have two files containing two different types of
events. Both of them are ready to be used for testing the
performance of matrix profile.

B. Event Discovery and Labeling Using Matrix Profile

We discover and label the power system events by applying
matrix profile on the current magnitude and rate of change
of frequency (ROCOF) time series from the PMU data files.
The length of subsequence m in this study is set as 90

Line 
tripping 1

Generator 
tripping 1 Generator 

tripping 2

Line 
tripping 2

Generator 
tripping 1

Generator 
tripping 2

Line 
tripping 1

Line 
tripping 2

(H
z/

s)
(H

z/
s)

Fig. 2: Current magnitude and ROCOF time series from
generator tripping event file and their matrix profiles.

Line 
tripping 1

Generator 
tripping 1 Generator 

tripping 2

Line 
tripping 2

Generator 
tripping 1

Generator 
tripping 2

Line 
tripping 1

Line 
tripping 2

(H
z/

s)
(H

z/
s)

Fig. 3: Current magnitude and ROCOF time series from line
tripping event file and their matrix profiles.

(3 seconds of PMU time series). Fig. 2 shows the current
magnitude and ROCOF time series in the generator tripping
event file and their corresponding matrix profiles. There are
two outstanding ‘valleys’ in the matrix profiles that corre-
spond to the two consecutive generator tripping events. To
discover these events in power systems, we set a threshold
Th = min (PT ) + [max (PT ) − min (PT )]/4 on the matrix
profile. Then an event alert is sent whenever the distance in
the matrix profile is below this threshold. Now suppose we
do not know the label of the second event, then this event
can be automatically labeled as a generator tripping event by
finding its nearest neighbor through the matrix profile index.



Specifically, this process is implemented in three steps:

• First, we locate all the abnormal subsequences by finding
local minima that are below the threshold in the matrix
profile.

• Second, we find the nearest neighbor for each abnormal
subsequence through the matrix profile index.

• Third, we assign the unlabeled subsequences with the
same label as their nearest neighbors.

Unsurprisingly, the subsequences that correspond to the
minima of the two ‘valleys’ in the matrix profile are nearest
neighbors of one another. The second event is therefore labeled
as a generator tripping event.

Fig. 3 depicts the current magnitude and ROCOF time series
in the line tripping event file and their corresponding matrix
profiles. The black dotted line marks the joint points of two
separate time series. The position of the right hand side time
series has been adjusted to smooth out the joint gap. Therefore,
this figure does not reflect the real magnitude of the right
hand side time series. Given the signature of the second line
tripping event is small, this example also demonstrates the
matrix profile’s advantage in discovering minor power grid
disturbances. Similar to the generator tripping case, the line
tripping events can be alerted by setting a proper threshold
on the matrix profile. The unlabeled events can then be
automatically labeled in the same fashion.

C. Merits of a Matrix Profile Based Framework

In the introduction section, we argue that our framework
is fast, scalable, and can be implemented in an anytime and
incremental fashion. Now, we use numerical experiments to
support these arguments. We will focus on the matrix profile
computation process since it consumes most of the compu-
tational time. The running time of the remaining steps in the
proposed event discovery and labeling framework is negligible
compared with that of the matrix profile computation step.

1) Fast: Computation of a matrix profile is fast. To show
this, we recalculate the matrix profile of the current magnitude
time series in Fig. 2 (6,000 data points) for 50 times using
Python codes. The time duration is, on average, 7.72 seconds
per run. Note that this time can be even shorter if we use other
programming languages such as C++ and Java.

2) Scalable: Computation of a matrix profile is scalable.
Recall that the time complexity of STAMP is O(n2 log(n)).
It does not include the subsequence length m (the only user
defined parameter). Thus, the time complexity of STAMP
only depends on the length of a time series. To estimate the
computation time of a matrix profile calculation for different
lengths of the PMU data, we stitch multiple copies of the
200-second current magnitude time series together to construct
longer time series. The computation time results are shown
in Table I. Currently, we only use a single CPU core to run
all the calculations. If we utilize multiple CPUs (or GPUs)
and run the STAMP algorithm in a parallel fashion, the total
computation time will be significantly reduced.

TABLE I: Computation time of a matrix profile (STAMP) and
its update (STAMPI) for different lengths of PMU data

PMU data length 200 s 1 h 4 h 8 h
STAMP 7.72 s 36.97 min 13.75 h 57.86 h
STAMPI 0.0013 s 0.0205 s 0.1146 s 0.4822 s

Algorithm 2: STAMPI

1 Tnew = [T old, dnew];
2 nnew ← length of Tnew, s = nnew −m+ 1;
3 Dnew ← MASS(Tnew

s,m , T old,m);
4 PT , IT ← ElementWiseMin(PT , IT , Dnew, s);
5 ps, is ← Min(Dnew);
6 PT ← [PT , ps], IT ← [IT , is];
7 return PT , IT

3) Incremental Computability: The matrix profile can be
updated incrementally. Note that the length of streaming
synchrophasor time series grows quickly as time goes by. It
is difficult and inefficient to update the matrix profile with the
original STAMP algorithm. For example, if we have a PMU
time series recorded for 8 hours (≈ 220 data points), it would
take nearly 58 hours with our Dell desktop to calculate the
new matrix profile when new data arrive. Although we can use
multiple CPU cores to accelerate the computation speed, it is
still too slow and inefficient. To overcome this difficulty, an
incremental version of STAMP called STAMPI was proposed
in [20]. The basic procedures of STAMPI are summarized
in Algorithm 2. The Min function (line 5) returns both the
minimum value ps and its index is in Dnew. By getting rid of
the for-loop, the time complexity of STAMPI is O(n log(n)),
that is n times faster than the original STAMP. To update the
matrix profile of the same PMU time series recorded for 8
hours with one more measurement, the STAMPI algorithm
only takes about 0.4822 seconds rather than 58 hours (see
Table I). Therefore, STAMPI is highly recommended when
updating the matrix profile of a large streaming dataset.

4) Anytime Algorithm: The matrix profile can be com-
puted in an anytime fashion that gives decent approximate
solution in a timely manner. Anytime algorithm refers to
algorithms that can yield valid solutions to a problem even
when they are interrupted in the middle of execution. A de-
sirable anytime algorithm should obtain a decent approximate
solution very fast and produce monotonically better results
as the calculation process continues. The original STAMP
algorithm can be adapted as an anytime algorithm by using
a random sequence of subsequences in line 3 of Algorithm 1.
The ElementWiseMin function guarantees that the solution is
monotonically improving.

We test the anytime algorithm on the same current magni-
tude time series shown in Fig. 2. To measure the performance
of STAMPI, we compute the mean absolute percentage error
(MAPE) between the anytime solution and the final matrix
profile as iteration continues. The results are depicted in Fig.
4. It shows that STAMPI can achieve a 90% accurate solution



0 1000 2000 3000 4000 5000 6000
Iteration

0
10

100
M

AP
E 

(%
)

Approximate matrix profile (1000 iterations)

Exact matrix profile

Fig. 4: Mean absolute percentage error between intermediate
solution and final matrix profile as iteration continues.

after just 1,000 iterations (1/6 of the total iterations). This
property can be very useful in online applications where the
time window for calculation is very short. We do not always
need the exact matrix profile. A decent approximate can work
well for most power system event discovery and labeling.

IV. CONCLUSION

This paper proposes a novel data analytic framework with
the matrix profile to discover and to automatically label power
system events using weakly labeled data. The matrix profile
can be efficiently computed through the STAMP algorithm.
The distances in the matrix profile are relatively large during
the normal operating conditions due to data noise, while the
power system events from the same class usually have similar
signatures in terms of shape. This property can be exploited
to discover and label power system events in PMU data. Case
studies with real-world PMU data are carried out to validate
the proposed approach. The results show that our framework
is capable of discovering and automatically labeling generator
tripping and line tripping events. The numerical study also
shows that the calculation of a matrix profile is fast, scalable,
and can be implemented in an incremental and anytime fashion
for online applications. Moreover, the anytime version of
STAMP can provide a 90% accurate matrix profile using only
1/6 of the total required iterations.

In the future, we plan to investigate how to efficiently
discover and label power system events with high-dimensional
PMU data. Furthermore, we will explore whether the GPU-
based matrix profile algorithms can better handle online power
system event detection tasks. In addition, we are also interested
in designing a systematic way of injecting noise into concate-
nated time series and an automatic threshold selection process
for detecting anomalous subsequences in a matrix profile.

REFERENCES

[1] S. Brahma, R. Kavasseri, H. Cao, N. Chaudhuri, T. Alexopoulos, and
Y. Cui, “Real-time identification of dynamic events in power systems
using PMU data, and potential applications-models, promises, and
challenges,” IEEE Transactions on Power Delivery, vol. 32, no. 1, pp.
294–301, Feb. 2017.

[2] A. Phadke and R. M. de Moraes, “The wide world of wide-area
measurement,” IEEE Power and Energy Magazine, vol. 6, no. 5, Sep.
2008.

[3] A. Phadke, J. Thorp, R. Nuqui, and M. Zhou, “Recent developments in
state estimation with phasor measurements,” in Power Systems Confer-
ence and Exposition, PSCE’09. IEEE, Mar. 2009, pp. 1–7.

[4] M. K. Neyestanaki and A. Ranjbar, “An adaptive PMU-based wide area
backup protection scheme for power transmission lines,” IEEE Trans.
Smart Grid, vol. 6, no. 3, pp. 1550–1559, May 2015.

[5] H.-Y. Su, F.-M. Kang, and C.-W. Liu, “Transmission grid secondary
voltage control method using PMU data,” IEEE Transactions on Smart
Grid, vol. 9, no. 4, pp. 2908–2917, Jul. 2018.

[6] G. Anagnostou, F. Boem, S. Kuenzel, B. C. Pal, and T. Parisini,
“Observer-based anomaly detection of synchronous generators for power
systems monitoring,” IEEE Transactions on Power Systems, vol. 33,
no. 4, Jan. 2018.

[7] Y. Zhou, R. Arghandeh, H. Zou, and C. J. Spanos, “Nonparametric event
detection in multiple time series for power distribution networks,” IEEE
Transactions on Industrial Electronics, vol. 66, no. 2, pp. 1619–1628,
Feb. 2019.

[8] A. Ukil and R. Živanović, “Abrupt change detection in power system
fault analysis using adaptive whitening filter and wavelet transform,”
Electric Power Systems Research, vol. 76, no. 9-10, pp. 815–823, 2006.

[9] S. S. Negi, N. Kishor, K. Uhlen, and R. Negi, “Event detection and
its signal characterization in PMU data stream,” IEEE Transactions on
Industrial Informatics, vol. 13, no. 6, pp. 3108–3118, Dec. 2017.

[10] D.-I. Kim, T. Y. Chun, S.-H. Yoon, G. Lee, and Y.-J. Shin, “Wavelet-
based event detection method using PMU data,” IEEE Transactions on
Smart grid, vol. 8, no. 3, pp. 1154–1162, May 2017.

[11] M. He, J. Zhang, and V. Vittal, “Robust online dynamic security
assessment using adaptive ensemble decision-tree learning,” IEEE Trans-
actions on Power systems, vol. 28, no. 4, pp. 4089–4098, Nov. 2013.

[12] M. Al Karim, M. Chenine, K. Zhu, L. Nordstrom, and L. Nordström,
“Synchrophasor-based data mining for power system fault analysis,”
in IEEE 3rd PES Innovative Smart Grid Technologies Europe (ISGT
Europe). IEEE, Oct. 2012, pp. 1–8.

[13] M. Biswal, Y. Hao, P. Chen, S. Brahma, H. Cao, and P. De Leon,
“Signal features for classification of power system disturbances using
PMU data,” in Power Systems Computation Conference (PSCC), 2016.
IEEE, Jun. 2016, pp. 1–7.

[14] M. Biswal, S. M. Brahma, and H. Cao, “Supervisory protection and
automated event diagnosis using PMU data,” IEEE Transactions on
Power Delivery, vol. 31, no. 4, pp. 1855–1863, Aug. 2016.

[15] T. Yin, S. S. Wulff, J. W. Pierre, and T. J. Robinson, “A case study on
the use of data mining for detecting and classifying abnormal power
system modal behaviors,” Quality Engineering, pp. 1–20, Jan. 2019.

[16] J. Ma, Y. V. Makarov, C. H. Miller, and T. B. Nguyen, “Use multi-
dimensional ellipsoid to monitor dynamic behavior of power systems
based on PMU measurement,” in Power and Energy Society General
Meeting-conversion and Delivery of Electrical Energy in the 21st
Century. IEEE, Jul. 2008, pp. 1–8.

[17] L. Xie, Y. Chen, and P. R. Kumar, “Dimensionality reduction of
synchrophasor data for early event detection: Linearized analysis,” IEEE
Transactions on Power Systems, vol. 29, no. 6, pp. 2784–2794, Nov.
2014.

[18] M. Zhou, Y. Wang, A. Srivastava, Y. Wu, and P. Banerjee, “Ensemble
based algorithm for synchrophasor data anomaly detection,” IEEE
Transactions on Smart Grid, Mar. 2018.

[19] J. Cordova, C. Soto, M. Gilanifar, Y. Zhou, A. Srivastava, and R. Arghan-
deh, “Shape preserving incremental learning for power systems fault
detection,” IEEE Control Systems Letters, vol. 3, no. 1, pp. 85–90, Jan.
2019.

[20] C.-C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau, D. F.
Silva, A. Mueen, and E. Keogh, “Matrix profile I: all pairs similarity
joins for time series: a unifying view that includes motifs, discords
and shapelets,” in IEEE 16th International Conference on Data Mining
(ICDM). IEEE, Dec. 2016, pp. 1317–1322.

[21] “The ucr matrix profile page,” 2019, https://www.cs.ucr.edu/ ea-
monn/MatrixProfile.html.

[22] A. Mueen, Y. Zhu, M. Yeh, K. Kamgar, K. Viswanathan,
C. Gupta, and E. Keogh, “The fastest similarity search algorithm
for time series subsequences under euclidean distance,” Aug. 2017,
http://www.cs.unm.edu/ mueen/FastestSimilaritySearch.html.

[23] J. Cordova, R. Arghandeh, Y. Zhou, S. Wesolowski, W. Wu, and
S. Matthias, “Shape-based data analysis for event classification in power
systems,” in IEEE Manchester PowerTech. IEEE, Jun. 2017, pp. 1–6.

[24] M. Brown, M. Biswal, S. Brahma, S. J. Ranade, and H. Cao, “Charac-
terizing and quantifying noise in PMU data,” in IEEE Power and Energy
Society General Meeting (PESGM). IEEE, Jul. 2016, pp. 1–5.


