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Abstract—Poor vegetation management around power lines
can cause severe fires that lead to tremendous economic losses,
environmental degradation, and fatalities. The early discovery of
a fire’s presence is the key to avoiding catastrophic damages. In
this paper, we propose a hybrid fire detection framework based
on a deep convolutional neural network (CNN) and a pixel-based
fire detector to automatically detect both the presence of fire and
its scale and position information. The pre-trained deep CNN
serve as a binary classifier to detect the presence of fire. The
pixel-based fire detector is designed to find the fire pixels in the
video frames, which indicate the scale and location of the fire.
Case studies are carried out on six real-world videos to validate
the proposed framework. It is shown that the proposed approach
can effectively detect fire and locate the fire pixels in the testing
fire videos.

Index Terms—Video fire detection, power line, deep convolu-
tional neural network, pixel-based fire detector.

I. INTRODUCTION

Power lines can easily cause sparks and fires when en-
croached on by tree branches or other conducting objects.
Facilitated by strong winds and dry conditions, these fires can
grow quickly into catastrophic wildfires. Recently, California
fire investigators announced that the power lines of Pacific Gas
and Electric Company (PG&E) were confirmed to be the cause
of the deadly Camp Fire in 2018 [1]. This wildfire killed 85
people and burnt a total of 153,336 acres, making it one of
the most devastating fires in California’s history.

Since early detection of a fire’s presence is the key to
avoiding catastrophic damages, electric utilities have been ex-
panding their camera networks to achieve timely fire detection.
There are two challenges to detecting wildfires from a vast
network of cameras. First, manually watching live video from
cameras is very labor intensive. Second, demanding system
operators to quickly identify the scale and location of a fire
is very unreasonable. Therefore, a technological solution of
automatic detection of fire and identification of fire location
and scale is highly desirable. The goal of this paper is to
develop computer vision-based techniques to address the two
challenges mentioned above.

Automatic video flame detection has been extensively stud-
ied in the literature. See [2] for a comprehensive review of the
traditional approaches. Most of them are pixel-based methods
that can easily locate fire and evaluate its scale. In recent years,
researchers have started using deep neural networks to detect

fire in either images [3] or videos [4]. It has been shown
that deep convolutional neural networks achieve a higher
fire detection accuracy than the traditional approaches [5]. In
addition, deep learning based objective detection and instance
segmentation methods such as Mask R-CNN [6] are capable
of extracting fire region masks while performing fire detection.
However, the success of these algorithms depend on obtaining
a large amount of training images with boundaries for fire
pixels, which is both labor-intensive and time consuming.
Furthermore, deep learning based objective detection and
instance segmentation methods take much longer training and
testing time than pure classification algorithms.

In this study, we propose a novel two-stage automatic fire
detection framework that exploits the merits from both the
deep neural network and traditional video flame detection tech-
niques. Specifically, our proposed framework consists of two
key components. The first component is a 50-layer residual
network (ResNet50) [7], which classifies given video frames
into fire or non-fire images. The second component takes the
fire images from the first component as inputs and identifies
fire pixels to estimate the location and scale of the fire.

The rest of this paper is organized as follows. Section II
presents the overall fire detection and positioning framework
and the technical methods used in the two key components.
Section III validates the proposed approach with real-world
fire and non-fire videos. Section IV states the conclusion.

II. OVERALL FRAMEWORK AND TECHNICAL METHODS

In this section, we first introduce the overall framework of
the proposed video fire detection and positioning framework.
Then we describe the technical methods used in the two key
components, the deep convolutional neural network and the
proposed pixel-based fire detector.

A. Overall Framework

The overall framework of our proposed two-stage video
fire detection scheme is shown in Fig. 1. In the first stage,
the current frame of a given video is classified as either a
fire image or a non-fire image. If it is a fire image, then this
frame is further processed by the pixel-based fire detector in
the second stage. The pixel-based fire detector produces a fire
region mask, which indicates the scale and location of a fire.
Note that the pixel-based fire detector may not find any fire
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Fig. 1: The overall framework of the proposed approach.

model top-1 err. top-5 err.

VGG-16 [41] 28.07 9.33
GoogLeNet [44] - 9.15
PReLU-net [13] 24.27 7.38

plain-34 28.54 10.02
ResNet-34 A 25.03 7.76
ResNet-34 B 24.52 7.46
ResNet-34 C 24.19 7.40
ResNet-50 22.85 6.71
ResNet-101 21.75 6.05
ResNet-152 21.43 5.71

Table 3. Error rates (%, 10-crop testing) on ImageNet validation.
VGG-16 is based on our test. ResNet-50/101/152 are of option B
that only uses projections for increasing dimensions.

method top-1 err. top-5 err.

VGG [41] (ILSVRC’14) - 8.43†

GoogLeNet [44] (ILSVRC’14) - 7.89
VGG [41] (v5) 24.4 7.1
PReLU-net [13] 21.59 5.71
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 5.71
ResNet-34 C 21.53 5.60
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
ResNet-152 19.38 4.49

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except † reported on the test set).

method top-5 err. (test)
VGG [41] (ILSVRC’14) 7.32
GoogLeNet [44] (ILSVRC’14) 6.66
VGG [41] (v5) 6.8
PReLU-net [13] 4.94
BN-inception [16] 4.82
ResNet (ILSVRC’15) 3.57

Table 5. Error rates (%) of ensembles. The top-5 error is on the
test set of ImageNet and reported by the test server.

ResNet reduces the top-1 error by 3.5% (Table 2), resulting
from the successfully reduced training error (Fig. 4 right vs.
left). This comparison verifies the effectiveness of residual
learning on extremely deep systems.

Last, we also note that the 18-layer plain/residual nets
are comparably accurate (Table 2), but the 18-layer ResNet
converges faster (Fig. 4 right vs. left). When the net is “not
overly deep” (18 layers here), the current SGD solver is still
able to find good solutions to the plain net. In this case, the
ResNet eases the optimization by providing faster conver-
gence at the early stage.

Identity vs. Projection Shortcuts. We have shown that
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Figure 5. A deeper residual function F for ImageNet. Left: a
building block (on 56×56 feature maps) as in Fig. 3 for ResNet-
34. Right: a “bottleneck” building block for ResNet-50/101/152.

parameter-free, identity shortcuts help with training. Next
we investigate projection shortcuts (Eqn.(2)). In Table 3 we
compare three options: (A) zero-padding shortcuts are used
for increasing dimensions, and all shortcuts are parameter-
free (the same as Table 2 and Fig. 4 right); (B) projec-
tion shortcuts are used for increasing dimensions, and other
shortcuts are identity; and (C) all shortcuts are projections.

Table 3 shows that all three options are considerably bet-
ter than the plain counterpart. B is slightly better than A. We
argue that this is because the zero-padded dimensions in A
indeed have no residual learning. C is marginally better than
B, and we attribute this to the extra parameters introduced
by many (thirteen) projection shortcuts. But the small dif-
ferences among A/B/C indicate that projection shortcuts are
not essential for addressing the degradation problem. So we
do not use option C in the rest of this paper, to reduce mem-
ory/time complexity and model sizes. Identity shortcuts are
particularly important for not increasing the complexity of
the bottleneck architectures that are introduced below.

Deeper Bottleneck Architectures. Next we describe our
deeper nets for ImageNet. Because of concerns on the train-
ing time that we can afford, we modify the building block
as a bottleneck design4. For each residual function F , we
use a stack of 3 layers instead of 2 (Fig. 5). The three layers
are 1×1, 3×3, and 1×1 convolutions, where the 1×1 layers
are responsible for reducing and then increasing (restoring)
dimensions, leaving the 3×3 layer a bottleneck with smaller
input/output dimensions. Fig. 5 shows an example, where
both designs have similar time complexity.

The parameter-free identity shortcuts are particularly im-
portant for the bottleneck architectures. If the identity short-
cut in Fig. 5 (right) is replaced with projection, one can
show that the time complexity and model size are doubled,
as the shortcut is connected to the two high-dimensional
ends. So identity shortcuts lead to more efficient models
for the bottleneck designs.

50-layer ResNet: We replace each 2-layer block in the

4Deeper non-bottleneck ResNets (e.g., Fig. 5 left) also gain accuracy
from increased depth (as shown on CIFAR-10), but are not as economical
as the bottleneck ResNets. So the usage of bottleneck designs is mainly due
to practical considerations. We further note that the degradation problem
of plain nets is also witnessed for the bottleneck designs.

6

Fig. 2: A sample building block of ResNet50 [7].

pixel in a given frame even if it is classified as a fire image.
In this case, the fire alert is still sent to the system operator
without a fire region mask.

B. ResNet50

In this study, we adopt a 50-layer residual network as
the binary classifier. The residual network is basically a
deep convolutional neural network with identity short cut
connections between certain layers. A residual network can
be constructed by stacking individual building blocks [7]. Fig.
2 shows a sample building block in ResNet50. The number of
filters varies for different blocks. Formally, a building block
is defined as:

oi = F (pi,Wi) + pi (1)

where pi and oi are the input and output of block i. The
function F (pi,Wi) represents the residual mapping (stacked
convolutional layers), which will be learned. A complete
ResNet50 is built by concatenating an input convolutional
layer, a max pooling layer, different building blocks, an
average pooling layer, and a fully connected layer in the end.
Refer to [7] for the details of the structure of ResNet50. In this
study, we use sigmoid activation function for the output layer.
The output layer has only one neuron becuase our problem is
a binary classification problem.

We train the ResNet50 using stochastic gradient decent
based on Adam optimization algorithm [8]. The loss function
to be minimized is the binary cross entropy given by

loss = −ynn log(ŷnn)− (1− ynn) log(1− ŷnn) (2)

where ŷnn is the output of the neural network. ynn ∈ {0, 1}
is the true label of a given image. Label 0 and 1 correspond
to non-fire images and fire images, respectively.

C. Pixel-based Fire Detection

The proposed pixel-based fire detector takes a frame classi-
fied as a fire image by ResNet50 as input and outputs a mask
of fire pixels. The flowchart of the pixel-based fire detector is
shown in Fig. 3. The fire frame is first processed by the color
detection and motion detection modules which produce a fire
color mask and a motion mask. The spatial variation check
is then carried out on the regions covered by the fire color
mask, which yields a spatial variation mask. Meanwhile, the
logic AND of the fire color mask and motion mask is sent to
the flick detection module that generates a flicker mask. The
final fire region mask is obtained by performing a logic AND
of the spatial variation mask and the flicker mask. We briefly
introduce the motivation and the methodology used for each
module below.

1) Color Detection: Typical flames have a color of either
yellow or red. The color properties of a fire can be exploited
to distinguish fire pixels from non-fire pixels. Numerous
techniques have been proposed to detect fire based on the color
of pixels in images. In this paper, we use a list of rules to find
pixels with color properties of a fire.

Let (xi, yi) denote the spatial location of a pixel. The
color of a pixel is represented in the YCbCr color space.
Let Ymean, Cbmean, and Crmean denote the mean values of
luminance, ChrominanceBlue, and ChrominanceRed channels
of all the pixels in the frame. Then a pixel is classified as a fire
color pixel if its color satisfies the following six rules adopted
from [9]. These rules are selected due to their simplicity and
computational efficiency.
Rule 1: Y (xi, yi) > Cb(xi, yi), Cr(xi, yi) > Cb(xi, yi)
Rule 2: Y (xi, yi) > Ymean

Rule 3: Cb(xi, yi) < Cbmean, Cr(xi, yi) > Crmean

Rule 4: |Cb(xi, yi)− Cr(xi, yi)| ≥ τ
Rule 5: f1(Cr(xi, yi))− Cb(xi, yi) ≥ 0
Rule 6: Cb(xi, yi)− f2(Cr(xi, yi)) ≥ 0
where τ = 40. f1(x) and f2(x) are defined as follows:

f1(x) =7.79× 10−3x2 + 2.10x− 2.25 (3)

f2(x) =

{
4.47× 10−2x2 − 16.94x+ 1513.52 x ≤ 142

3.39× 10−5x2 + 0.77x− 98.31 else

(4)

2) Motion Detection: In real-world cases, many non-fire
objects such as the sunset and red traffic lights have a
color very similar to a fire. Therefore, fire detection methods
depending solely on color are likely to yield false positives.
Note that uncontrolled fires are unstable and dynamic. Thus
moving objection detection techniques can help reduce the
number of false positives.

In this paper, we use a Gaussian mixture model (GMM)
based background subtraction method [10], [11] to detect
moving objects in a video. This approach is highly accurate
and has shown good performance in outdoor environments.
The advantage of this approach is that the background model
can automatically adapt to the scene. The basic idea of
the adopted motion detection algorithm is described here.
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Fig. 3: Flowchart of the pixel-based fire detector.

Let xt
ij be the RGB value of pixel (xi, yj) at time t and

XT = {xt
ij , · · · ,xt−T

ij } be the set of T historic samples.
The background model is defined as p(xt

ij |BG), which is
the distribution of xt

ij given that xt
ij is a background pixel.

An estimate of a background model based on a GMM model
with M components is initialized and updated recursively with
streaming historic dataset XT . The model only uses a subset
of the M components as follows:

p̂(xt
ij |BG) =

∑
m∈MB

π̂mN(xt
ij ; µ̂m, σ̂

2
mI) (5)

where π̂m, µ̂m, and σ̂2
mI are the mixing weight, the mean

vector, and the covariance matrix of the mth Gaussian com-
ponent, respectively. MB is the set of B components with the
largest π̂m. Specifically, B is determined by

B = argmin
b

(
b∑

m=1

π̂m > (1− cf )
)

(6)

where cf is a tunable parameter. We refer the readers to [10]
for the specific procedures of GMM parameter update.

3) Flicker Detection: Fire detection based on both color
and motion information can still cause false positives. For
example, a moving red vehicle can be easily mistaken for
fire. Generally speaking, fire flames flicker in uncontrolled
fires. This phenomenon can be captured by cameras because
fire colored pixels can appear and disappear on the edge
of turbulent flames. Therefore, a flicker detection module is
introduced to further reduce the possibility of false positives.

The flicker frequency is often around 10 Hz regardless of the
burning material and the burner [12], [13]. Therefore, flicker
pixels can be detected by evaluating the spectrum of historic
color values. Specifically, we use a two-stage filter bank
based on discrete wavelet transform (DWT) to decompose the
pixel color signals [14]. A two-stage filter bank can provide
sufficient resolution in our application given that common
videos have frames per second (fps) between 20 to 40. Fig.
4 shows the structure of the DWT filter bank. In this paper,
we use Daubechies wavelet with 5 vanishing moments. T is a
buffer of historic red channel values (or Y component in YUV
color space) of a given pixel. The buffer size is set to be 45.
T 1
H is the detail coefficients of stage 1. T 2

H and T 2
L are the

detail coefficients and approximation coefficients of stage 2,
respectively. Given a video of 30 fps, T 1

H covers the frequency
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Fig. 4: Two-stage filter bank based on DWT.
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Fig. 5: Spatial variation check process.

band between 7.5 Hz to 15 Hz. T 2
H covers the frequency band

between 3.75 Hz to 7.5 Hz. Therefore, we concatenate T 1
H

and T 2
H into a single time series TF = [T 1

H , T
2
H ]. Then a

pixel is labeled as a flicker pixel if the mean square root of
its corresponding TF is greater than a predefined threshold,
which is set as 5 in the case study.

4) Spatial Variation Check: It has been discovered that
flame colors of uncontrolled fires vary spatially across the fire
region. In other words, the color value of the flame region has
a significant variance. Therefore, this property can be exploited
to distinguish fire flames from other objects with fire color but
little color variance.

In this paper, we use a simple spatial variation check process
illustrated in Fig. 5. First, we carry out connected-component
labeling [15] to extract all the fire color blobs from the fire
color mask produced by the color detection module. Then,
we filter out the blobs that have a number of pixels less than
10. For each surviving blob, we calculate the variance of red
channel values among all its pixels. If the variance is greater
than a predefined threshold (100 in the case study), then the
corresponding blob passes the spatial variation check.
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Fig. 6: Training loss and accuracy.

III. CASE STUDY

In this section, we test our proposed video fire detection
approach with several real-world fire and non-fire videos. First,
our binary classifier ResNet50 is trained with fire and non-
fire images downloaded from Google and Baidu. Then, the
whole algorithm is evaluated on three fire videos and three
non-fire videos downloaded from YouTube. The results will
be discussed in detail in the following subsections.

A. Training of ResNet50

ResNet50 is trained on 4,500 downloaded images, which
include 1,660 fire images and 2,840 non-fire images. The
images are resized to 224×244 and then divided randomly into
two sets. The first set is the training dataset, which consists of
3,600 images. The second set is the validation dataset, which
consists of 900 images. An NVIDIA RTX 2080 Ti GPU is
used to accelerate the training process.

The entry values of the input array are scaled to be in the
range of [0, 1]. The training batch size is set to be 32. We
train our ResNet50 for 4,000 epochs. The training loss and
accuracy with respect to epoch are given in Fig. 6. Similarly,
the validation loss and accuracy with respect to epoch are
displayed in Fig. 7. It can be seen that ResNet50 exhibits a
strong ability to classify fire and non-fire images. The training
accuracy reaches almost 1 after a few hundred epochs of
training. The validation accuracy also increases rapidly in the
first few hundreds of epochs. It then reaches a plateau and
fluctuates around 0.9 as the training process continues.

B. Testing on Videos

We downloaded three power line fire videos and three non-
fire videos from YouTube. All the frames in the fire videos
have fire. Similarly, all the frames in the non-fire videos do
not have fire. Each video is around 10 seconds. The trained
ResNet50 is used to classify each frame in the videos. A
frame is classified as fire image once the corresponding output
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Fig. 7: Validation loss and accuracy.
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Fig. 8: Classification results of frames in the fire videos.
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Fig. 9: Classification results of frames in the non-fire video 1.

probability is above 0.5. The probabilities of frames in the fire
videos and non-fire video 1 are shown in Fig. 8 and Fig. 9,
respectively. All frames in non-fire video 2 and 3 are correctly
classified as non-fire images. As shown in the figures, the
trained ResNet50 achieves high classification accuracy in the
testing videos. Note that all these six tests are out-of-sample
tests. None of the frames in these six videos are included in
the training dataset. There are a few false negatives in all three
fire videos and false positives in non-fire video 1. In practice,
a few scattered false negatives will not have a significant



(a) False negative frame sample. (b) False positive frame sample.
Fig. 10: False negative frame sample in fire video 1 and false
positive frame sample in non-fire video 1.

(a) Frame sample in fire video 1. (b) Fire region mask in fire video 1.

(c) Frame sample in fire video 2. (d) Fire region mask in fire video 2.

(e) Frame sample in fire video 3. (f) Fire region mask in fire video 3.

Fig. 11: Sample frames of fire videos and fire region masks.

impact. This is because fire can still be detected in a timely
manner with videos having a frame rate between 20/s and 30/s.
However, even a few false positives can be annoying in real-
wold applications. Unfortunately, the proposed algorithm can
not completely avoid false positives. Fig. 10 shows two frame
samples that are classified incorrectly. The cause of the false
negative sample on the left hand side is unclear. For the false
positive sample, our ResNet50 possibly mistakenly identified
the red lights of the fire truck as a real fire.

Fig. 11 shows three samples of fire region segmentation
produced by our pixel-based fire detector. The gray images
on the right display the fire region masks. The color images
on the left are the corresponding original frames in the fire
videos, where green outline boxes represent the convex hulls
of the detected fire pixels. As illustrated in the figures, the fire
regions can be effectively identified by our proposed pixel-
based fire detector for all the testing fire videos.

IV. CONCLUSION AND FUTURE WORK

This paper proposes a novel video fire detection framework
for power line fire safety. It consists of a deep convolutional
neural network (ResNet50) and a pixel-based fire detector.
ResNet50 serves as a binary classifier to detect the presence
of fire in a given video frame. The pixel-based fire detector
then identifies the corresponding fire region in a fire video
frame. The pixel-based fire detector consists of four major
modules: color detection, motion detection, flicker detection,
and spatial variation check. The pixels that pass the tests of
all four modules are considered fire pixels, from which the
fire location and scale can be estimated. Case study on real-
world power line fire videos show that the proposed framework
can effectively detect the presence of fire and locate the
corresponding fire pixels in the testing fire videos.

In the future, we will investigate how to further reduce
the false classification rate in our proposed automatic video
fire detection framework. With the fast expansion of camera
networks, we plan to develop an algorithm to select the optimal
placement of new cameras.
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