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Abstract—As advanced metering infrastructure becomes in-
creasingly prevalent, new data-driven techniques for distribution
system control and monitoring have emerged. The efficacy of
these techniques, however, can be compromised by erroneous
data. This paper develops a graph signal processing-based bad
data detection algorithm. First, a physics-based graph construc-
tion algorithm is proposed for three-phase power distribution
systems. Then, we introduce a data-driven algorithm for detecting
erroneous data points by clustering the low-dimensional repre-
sentations of the graph Fourier transforms of voltage signals. The
numerical study results using the IEEE 13-bus test feeder and
real-world smart meter time series data show that our proposed
algorithm achieves high F1 and accuracy scores.

Index Terms—Bad data detection, graph signal processing,
power distribution systems, smart meter.

I. INTRODUCTION

Reduction in the costs of advanced metering infrastructure
has contributed to smart meters being increasingly installed
for residential and commercial customers, leading to an influx
of data on power distribution systems. This data has opened
new avenues for key data-driven applications [1], such as
state estimation, volt-var control, and theft detection. However,
these applications rely on clean data. Anomalous data may
be recorded by smart meters for a variety of reasons, such as
meter malfunction, false data injection attacks, or interruptions
in the communication channel between the meter and the
utility. All of these potential issues compromise the assumption
that the recorded smart meter data is actually clean. Therefore,
an erroneous data detection algorithm for smart meter data is
in critical need.

In this paper, we propose a method for identifying erroneous
voltage measurements in distribution systems. The proposed
method is based on graph signal processing, and particularly,
clustering of voltage signals in the frequency domain. The
main contributions of this paper are as follows. First, we
propose a physics-based approach to construct a weight matrix
and perform graph signal processing for three-phase power
distribution systems. Second, we propose a data-driven method
for detecting bad data by clustering spectral voltage signals in
a lower-dimensional space.

Graph signal processing is an emerging field based on
exploiting signal processing in the context of graph theory.
In particular, it leverages the connectivity of a system and
elements of classical signal processing. The use of graph signal

processing has been extensively explored in areas such as
transportation networks, meteorological systems, and social
networks. However, graph signal processing techniques have
not been thoroughly studied in three-phase power systems.
To this end, we propose a physically-inspired weight matrix
construction tailored to analyze voltage signals.

The remainder of this paper is structured as follows. Section
II reviews works in the field of bad data detection in power
distribution systems. Section III introduces the basics of graph
signal processing and the proposed method for bad data detec-
tion in three-phase distribution networks. Section IV describes
the experimental setup and performance of the proposed bad
data detection algorithm. Section V states the conclusions.

II. RELATED WORK

There have been several proposed methods for detecting
anomalies in the context of power, both in transmission and
distribution systems. In distribution systems, bad data detec-
tion is often considered in the context of state estimation [2],
[3]. However, these methods rely on redundant measurements.
Although deployment of advanced metering infrastructure is
increasing, redundant measurements are not always available.

Others have proposed approaches to bad data detection
using neural networks [4]–[6]. However, these approaches
require a model to be trained, with the assumption that clean
training data is available. [7] uses a PCA-based approach
to detect errors using a residual in the reduced space. The
approach is purely data-driven, with no accounting for the
physical parameters of the system. As a result, a topology
change may be flagged by the algorithm as an error. A physics-
based data-driven model is developed to detect electricity theft
in power distribution systems [8]. Although the algorithm
achieves great performance, it relies on an accurate smart
meter to transformer mapping model, which may not be
available.

The use of graph signal processing as it relates to distri-
bution systems has been limited. [9], [10] cover the use of
graph signal processing for non-intrusive load disaggregation.
[11], [12] use graph signal processing to detect false data
injection attacks and abnormal events in transmission systems,
where the network model is approximated by its single phase
representation. Graph signal processing for unbalanced three-
phase distribution systems remains untouched. There remains



Fig. 1. Overall framework of the proposed bad data detection algorithm for power distribution systems

a need for a bad data detection algorithm which does not rely
on training data and does not require measurement redundancy.

III. TECHNICAL METHOD

A. Overall Framework

The proposed framework is based on graph signal process-
ing, and in particular the transformation of a signal comprised
of voltage measurements into the frequency domain using a
physically-inspired graph Laplacian. Such signals should have
similar spectral components among normal measurements.
Thus, by clustering these signals based on their spectral
components, signals with erroneous measurements can be
separated from those without.

The following section introduces graph signal processing
and, in particular, transforming a nodal signal into a spectral
signal by the graph Fourier transform. Then, a graph weight
matrix based on voltage drop is introduced to facilitate this
transformation for the task of nodal voltage error detection.
This section then concludes by introducing the clustering
method by which anomalous signals may be separated from
normal ones.

B. Review of Graph Signal Processing

A graph is defined by a set of N nodes or vertices V ∈
[v1, ..., vN ] connected by M edges E ∈ [e1, . . . , eM ]. The
adjacency matrix A of a graph is a symmetric matrix with the
ijth element aij = 1 if eij exists and 0 otherwise. In general,
these connections may or may not be directed. That is, aij may
or may not equal aji. An extension of the adjacency matrix
is the weight matrix W, in which the wij may assume some
value relating to the strength of the connection between nodes
i and j. The degree matrix D is a diagonal matrix wherein
the entries dii are defined as the sum of all weights related to
node i: dii =

∑N
j=1 eij . As the basic building block of graph

signal processing, the graph Laplacian can then be defined as
L = D −W .

Graph signal processing extends traditional graph theory by
defining a signal on a graph as a set of nodal measurements
x = {x1, ..., xN}. The graph Laplacian may be decomposed

by eigenvalue decomposition. The decomposition is obtained
as:

L = UΛU (1)

where the columns of U are the eigenvectors of L and Λ
is a diagonal matrix comprised of the eigenvalues, with the
eigenvalues sorted in ascending order. The Laplacian has
at least one zero eigenvalue [13]. The magnitude of the
eigenvalues corresponds to the frequency component of the
signal, with eigenvectors corresponding to small eigenvalues
being part of the low-frequency component.

Using the eigenvalue decomposition of the Laplacian, the
graph Fourier transform (GFT) X of signal x, also referred to
as the spectral signal, is defined as

X = U−1x (2)

Similar to the Fourier transform of a classical signal, the
GFT takes the signal from the vertex domain to the frequency
domain. Arising from this transformation is a notion of
‘smoothness’, a measure of the overall variation across the
graph. A signal is smooth if it varies slowly in the frequency
domain, and thus has mostly low-frequency components.

C. GSP for Power Distribution System Measurements

We treat smart meters and SCADA measurement points as
the nodes in the graph. The nodal signals are the voltage
magnitude measurements. In power distribution systems, most
buses are served by more than one phase wire, and accordingly
there can be more than one voltage magnitude measurement
at every bus. To address this issue, a distribution grid is split
into multiple graphs, each corresponding to a certain phase
connection. The manner in which the phase connection is
defined in each graph depends on the phases across which
the nodal voltage magnitude is measured. If all measurements
are phase-to-neutral, then the grid may be separated into three
graphs, each corresponding to a particular phasing φi1−φi2 ∈
[A−N,B−N,C−N ]. If all measurements are phase-to-phase
or some combination of phase-to-phase and phase-to-neutral,
then the grid may be separated into three graphs corresponding
to phasings φi1 − φi2 ∈ [A−B,B − C,C −A].



Note that in terms of voltage magnitude, phasing A−B is
equivalent to B−A, as they differ only in voltage angle by 180
degrees. Our proposed graph construction strategy allows for
combinations of measurements, wherein voltage is measured
as line-to-neutral at some buses but line-to-line at others.
Distribution systems often measure line-to-line voltages, but
there is the possibility that a bus is served by only one phase
wire, and thus only line-to-neutral measurement is possible.
In such a case, the line-to-neutral measurement is included
in each graph containing that phase, assuming that phasing
is present on the wires connecting the bus to the source. For
example, a certain bus voltage may be measured on phase
C −N , but served by a distribution line which at some point
only carries phases B and C, but not A. In this scenario, the
bus will only appear in the graph of phase B − C. Note that
we assume voltage magnitude measurements are available at
each bus on each phasing served. With the nodes defined, it
remains to define the weights between these nodes.

Physical systems often present intuitive means of construct-
ing the adjacency matrix and weight matrix. For example,
the weight matrix can be constructed using the Euclidean
distance between nodes or the similarity between nodal mea-
surements. For power distribution systems, it is natural to
leverage physical line parameters. The edge weights should
model the similarities between voltage measurements. Nodes
that are not physically connected, intuitively, should have an
edge weight of 0. Nodes connected by lines with small voltage
drops should have more similar voltage measurements than
nodes connected by lines with large voltage drops.

1) Weight Matrix Definition: The weight matrix of a par-
ticular phasing of the distribution system graph is constructed
as follows. If a line connecting node i and j exists, the weight
between node i with phasing φi1−φi2 and node j with phasing
φj1 − φj2 can be defined as:

wi,j =



(vdropφi1
)−1, if φi2 or φj2 = N

and φi1 = φj1 or φj2
(vdropφi2

)−1, if φj2 = N and
φi2 = φj1

(vdropφi1
− vdropφi2

)−1, if φi2 = φj2 6= N
(3)

where the per-phase voltage drop with 1 per unit current flow
on phase Φ ∈ [A,B,C] can be calculated as:

vdropΦ = ZΦ · Ilinephase (4)

where ZΦ =
[
zΦA zΦB zΦC

]
denotes the row of the 3

by 3 line impedance matrix that corresponds to phase Φ.
Ilinephase =

[
1∠120° 1∠0° 1∠− 120°

]
denotes the per

unit balanced current vector.
As previously discussed, the nodes in any given graph are

restricted to carrying at least one of the same phase. The
weight matrix definition in (3) accounts for voltage drop, and is
applicable both for voltages measured line-to-neutral and line-
to-line. The first case in (3) corresponds to the weight between
two line-to-neutral nodes, as well as the weight between a line-
to-line node and a line-to-neutral node. The second case also

corresponds to the weight between a line-to-line node and a
line-to-neutral node, where the difference to the first case is
due to phase ordering. The third case pertains to the weight
between two line-to-line nodes. The per-phase voltage drop
is an approximation of the voltage drop, assuming a nearly
balanced distribution system, not including a scale factor for
current magnitude.

The weight matrix definition presented above results in
weights which are complex valued. Typically, weight matrices
in graph signal processing are restricted to be real-valued.
Accordingly, we define weight matrices corresponding to the
real part Wr = real(W ) and imaginary part Wi = imag(W ).

D. Spectral Clustering Method

A common method for error detection in graph signal
processing relies on a smoothness score s = XT diag(Λ). This
score is larger when the signal contains more high frequency
components. Using this smoothness score, a threshold may
be defined such that if the smoothness exceeds the threshold,
a bad data point is flagged at that time step. This method is
effective. However, the selection of a threshold is often a tricky
task in the absence of labelled erroneous data points. Instead
of using the smoothness score, which is a specific engineered
feature based on the spectral signals, we propose to detect
bad data in a two step process. First, the dimensionality of the
spectral signal is reduced using a nonlinear low-dimensional
embedding technique. Then, we group the reduced-dimension
components into the normal and abnormal data points using a
density-based clustering approach.

The reasoning behind the adoption of a clustering approach
to detect abnormal data points is as follows. Spatial and
temporal fluctuations in power consumptions cause variations
in nodal voltage measurements. Due to Kirchhoff’s laws, the
voltage signals should be similar at connected nodes. Thus,
the corresponding spectral signal should be dominated by low-
frequency components. With a weight matrix which properly
accounts for nodal voltage correlations, the normal signals will
have similar spectral components. However, if one or more
meters report bad voltage data point(s), the frequency-domain
signal will be altered. This results in faulty signals having
spectral components different from that of the normal signals.

This method also allows for the use of more than one weight
matrix. As previously mentioned, the complex weight matrix
may be split into real and imaginary parts. Each signal is
converted into two spectral signals corresponding to the real
and imaginary parts, which can be concatenated to form a
hybrid signal. This construction is more robust than relying on
the voltage magnitude or the real part of the voltage phasor
alone as it properly accounts for both the real and imaginary
parts of the impedance’s contributions to voltage drop. The real
and imaginary parts of impedance do not contribute equally
to voltage drop. Thus, taking the magnitude of impedance
somewhat obscures the individual footprints of the two signals.

1) Feature Extraction and Dimensionality Reduction: The
number of components of the spectral signal on each graph
is equal to the number of nodes on the graph. Taking the



GFT using the real and imaginary parts of the weight matrix
separately doubles the number of components in the hybrid
signal. However, not all of the components contribute equally
to the task of bad voltage data detection. Certain components,
especially those corresponding to the low frequency variations
on the graph, may not be good indicators of faulty measure-
ments. As such, it is necessary to perform feature extraction
and dimensionality reduction in order to successfully separate
erroneous data points from normal ones through clustering.

For the task at hand, it is desirable to obtain visually inter-
pretable results. In the real-world application of the proposed
method, it is unlikely that a sufficient number of labelled
erroneous data would be available for tuning hyperparameters
of the clustering method. Visualization of the embedding
allows for effective hyperparameter tuning.

T-distributed Stochastic Neighbour Embedding (t-SNE) is
chosen to perform nonlinear dimensionality reduction [14],
for its ability to model similar points in the high-dimensional
space as clusters in the embedded space, as well as provide
visualizations of high-dimensional data. t-SNE defines two
probability matrices, one in the original high-dimensional
space and one in the low-dimensional space, wherein high
similarity between points corresponds to higher probability.
Then, the positions of points in the embedding are found
by minimizing the Kullback-Leibler divergence between the
two matrices with a gradient descent method. If normal data
outnumber the abnormal ones, t-SNE should create an embed-
ding which shows normal measurements in large clusters, and
erroneous measurements as smaller clusters or outliers.

2) Clustering: In order to identify the erroneous data, we
apply a clustering algorithm on the low-dimensional embed-
ding of the spectral signal. With a sufficient number of data
points, the normal measurements should form high density
regions and the erroneous ones should be separated from these
regions by areas of low density. The clusters in the embedded
space may have an irregular shape. Thus, a density-based clus-
tering method, Density-based spatial clustering of applications
with noise (DBSCAN), is selected as the clustering algorithm.

DBSCAN forms clusters by identifying points having a
sufficient density to be considered a cluster [15], based on
two parameters. MinPts defines the minimum number of
points to be considered a cluster. ε pertains to the distance
between points. A cluster begins with an initial group of points
with MinPts within the ε-neighbourhood. The cluster then
expands to include all points within the ε-neighbourhood of
those points also satisfying the density constraint, and all other
points satisfying the density constraint which can be connected
by a chain of points back to the initial cluster. At the edges
of the cluster are points not satisfying the density constraint,
but being within the ε-neighbourhood of a point which does.

Assuming the probability of bad data is relatively low, the
clusters of faulty signals are identifiable by the relative size
of the clusters. Error labels are assigned by the cardinality of
the clusters of each point. Outliers and groups with cardinality
less than a threshold are flagged as errors.

IV. EXPERIMENTAL VALIDATION

A. Experimental Setup

To validate the proposed method, we use the standard
IEEE 13-bus distribution test feeder, coupled with a time-
series dataset constructed with the Commission for Energy
Regulation smart meter data from the Irish Social Science Data
Archive [16]. This dataset consists of time-stamped real power
consumptions in 30-minute windows over approximately one
year. To represent the load of each node in the test feeder, 100
customers are chosen from this original smart meter dataset
at random. These aggregated loads are then scaled such that
the average consumption for each node is equal to the loads
specified by the original IEEE test feeder. Then, three-phase
load flow is performed to obtain the nodal voltages. To emulate
random measurement noise, Gaussian noise is added to the
voltage measurements with mean 0 and variance of 0.003%
of the voltage. These nodal voltages are then corrupted with
synthetic bad measurements. At each node and each time step,
with a 0.1% probability a measurement error with magnitude
chosen uniformly at random between 3% and 5% of the raw
measurement is added or subtracted, with equal probability, to
the original measurements.

Two test scenarios are created based on the test feeder. In the
first scenario, it is assumed that the smart meter at each node
measures line-to-neutral voltage. In the second scenario, it is
assumed that smart meters measure line-to-line voltage, except
at the buses served by single-phase lines. One modification is
made to the topology of the IEEE 13-bus feeder to remove
the switch which incurs no loss. In the context of GSP, two
nodes separated by a switch are effectively the same node if
that switch is closed. The voltages on the two sides of the
switch are identical. Thus, the two nodes are merged together.

T-SNE has several hyperparameters, with the most impor-
tant being the perplexity p, which has a significant impact on
the distribution of the points in the low dimensional space.
In the test scenarios, varying the perplexity between 30 and
80 results in similar performance. The best performance for
each phasing in both test scenarios can be achieved with
p = 50. Tuning this parameter may be done without labelled
erroneous data by looking for the value which maximizes
the space between groups. Because t-SNE is selected for the
dimensionality reduction, the embedded spectral signals easily
show interpretable clusters. The plots of points in the low-
dimensional space can be used to select appropriate values
of ε and MinPts for DBSCAN. In this study, ε = 2.5 and
MinPts = 3 are used. The cardinality threshold used for
classifying clusters is 25.

B. Numerical Results

We apply the proposed data-driven bad data detection algo-
rithm on the two test scenarios and evaluate its performance
with two metrics: F1 score and accuracy. F1 score is the har-
monic mean of precision and recall: F1 = 2 · Precision·RecallPrecision+Recall ,
where Precision is calculated as the ratio between true
positive and the summation of true positive and false positive.



TABLE I
PERFORMANCE OF GSP-BASED BAD DATA DETECTION ALGORITHM

Phase F1 Score Accuracy

Scenario 1
AN 0.921 0.982
BN 0.945 0.965
CN 0.948 0.988

Scenario 2
AB 0.946 0.984
BC 0.939 0.981
CA 0.900 0.964

Fig. 2. Visualization of the spectral signals in the low-dimensional space with
bad data detection results on phase A−N .

Recall is the ratio between true positive and the summation
of true positive and false negative.

In the test scenarios, the number of normal measurements
far outnumbers the number of erroneous data points. The
F1 score essentially weights the false positive rate and false
negative rate equally, but a higher false positive rate results
in a much larger number of misclassified points than a higher
false negative rate. Accordingly, accuracy is also reported. As
shown in Table I, the GSP-based bad data detection algorithm
achieves F1 scores above 0.9 and approaching 0.95 for several
phase connections. The accuracy scores are higher than 0.96
for all phase connections. The proposed method performs well
for both the phase-to-neutral configuration of the first scenario
and the hybrid configurations of the second scenario.

Figure 2 shows the spectral signals for the phase A-N graph
in the embedded space. Normal signals are referred to as
negatives and errors as positives. As shown in the figure, the
combination of GFT and t-SNE results in good separation
between normal signals and bad data. Normal signals form a
small number of high-density clusters. Erroneous signals, for
the most part, form small clusters separated from these larger
clusters, or are outliers. A number of normal signals form
small clusters with cardinality indistinguishable from clusters
of errors, resulting in misclassification of those clusters. Sim-
ilarly, some erroneous data points form clusters large enough
that they are misclassified as normal data. A small number of
bad data are grouped with normal clusters in the embedded
space, resulting in incorrectly labelling those errors as normal.

V. CONCLUSION

In this paper, we introduce a novel graph signal processing-
based approach to detect bad data in power distribution sys-

tems. We propose a physics-based graph construction and edge
weights calculation methodology for three-phase distribution
networks. We also develop an innovative approach, which
combines feature extraction and density-based clustering to
identify bad data by their spectral footprint. The proposed
method is validated using the IEEE 13-bus test feeder and
augmented real-world smart meter data. The results show that
our proposed algorithm yields highly accurate abnormal data
detection results for both phase-to-neutral and phase-to-phase
configurations and all phase connections.
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