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Abstract—The ability to learn power system dynamic model
and predict transient trajectories using data is crucial to realizing
closed-loop control of the system with artificial intelligence. This
paper proposes a Nearly-Hamiltonian neural network to predict
transient trajectories and dynamic parameters of the power
system by embedding energy conservation laws in the proposed
neural network architecture. This inductive bias empowers the
proposed model to learn the power system dynamics without
explicitly using the exact functional form of the power system
dynamic equations. The numerical study results on the single ma-
chine infinite bus system show that the proposed model produces
accurate system trajectories and damping coefficient predictions.
Furthermore, the proposed model significantly outperforms the
baseline and Hamiltonian neural network.

Index Terms—Hamiltonian system, Nearly-Hamiltonian neural
network, power system dynamics.

I. INTRODUCTION

The ability to learn complex power system dynamics and
predict post-disturbance transient trajectories is critical for the
power system operators to perform stability analysis and take
appropriate corrective control actions in real-time operations.
This capability is becoming increasingly important as the
renewable generation penetration level continue to grow.

Traditionally, power system operators have relied on online
dynamic simulations to perform transient stability assessment.
However, solving a large number of differential algebraic
equations representing the power system dynamics is com-
putationally intensive. Furthermore, it is challenging to obtain
accurate dynamic parameters of various system components.
Some of the dynamic parameters (e.g., parameters of load
models) could be changing quickly over time.

The wide-spread adoption of phasor measurement units
(PMUs) and the advancement of machine learning algorithms
make it possible to develop deep neural networks to learn the
power system dynamic model [1], estimate dynamic param-
eters [2], evaluate health index and stability margin [3]–[5],
and predict transient trajectories [6], [7]. The machine learning
models adopted and developed in the existing literature can
be divided into three groups. In the first group of methods,
tailored deep neural networks such as feed-forward neural
network [3], cascaded convolutional neural network (CNN) [4]
and hierarchical CNN [5] are used to predict critical clearing
time, perform stability assessment, and predict stability mar-
gin. Since a limited amount of physical models are embeded

in these machine learning models, a large number of training
samples are needed to achieve reasonable prediction results.

In the second group of methods, physics-aware machine
learning models such as the structure-informed graph learning
approach [6] and Fourier neural operator were developed to
predict system trajectories based on recent state trajectories
[7]. By injecting system graph information and inductive bias
about a small number of modes in the frequency domain,
these models are capable of producing fairly accurate transient
trajectory predictions in an online manner. However, there is
no guarantee that the predicted system trajectories will satisfy
the basic energy conservation laws in the electric network.

In the third group of methods, the exact functional forms of
power system dynamic equations are embeded in the machine
learning model yielding physics-informed neural network [1]
and physics-based neural ordinary differential equations [2].
These physics-based neural network models require substan-
tially less training data, have simpler and sometimes inter-
pretable network structures, and achieve high accuracy. How-
ever, given the increasing penetration of renewable generation
and distributed energy resources, power system operators often
do not know the exact functional form of the power system
dynamics equations. This makes it difficult to apply these
powerful physics-based methods in practice.

This paper tries to embed key physics priors, energy con-
servation laws, as inductive bias in the proposed Nearly-
Hamiltonian neural network (NHNN) to predict system trajec-
tories and estimate the dynamic parameters without explicitly
using the exact functional form of the power system dynamic
equations. To illustrate how the proposed algorithm can be
applied to learn power system dynamics, the single machine
infinite bus (SMIB) system is first formulated as a Nearly-
Hamiltonian system. Then a deep neural network is trained
to learn the Hamiltonian function and the generator damping
coefficient by minimizing the difference between the estimated
and measured gradient of the generalized positions and gen-
eralized momentum of the Nearly-Hamiltonian system. This
paper is inspired by the recent work on the Hamiltonian neural
network (HNN) [8] but extends it by considering dissipative
dynamical systems such as power systems with damping
effects. The proposed NHNN has broader applicability than
the physics-informed neural network as it does not explicitly
use the exact functional form of the dynamic equations of



power system. It also improves upon the physics-aware neural
networks by endowing the model with the ability to learn
conserved or nearly conserved quantities in the power system
dynamics.

The remainder of this paper is organized as follows. Section
II formulates the SMIB system as a Nearly-Hamiltonian
system and proposes the NHNN to learn in this dynamical
system. Section III presents the numerical studies. Section IV
gives the conclusion.

II. TECHNICAL METHODS

In this section, we first review the preliminaries of Hamilto-
nian and Nearly-Hamiltonian systems. Then, the SMIB power
system dynamic model is introduced and formulated as a
Nearly-Hamiltonian system. Finally, the NHNN is proposed
to learn the power system dynamics.

A. Review of Hamiltonian and Nearly-Hamiltonian Systems

A dynamical system can be modeled as a Hamilto-
nian system governed by Hamiltonian’s equations. Let us
consider a dynamical system with N coordinate pairs
(q1, p1) · · · (qN , pN ), where q = [q1, q2, · · · , qN ]T represents
the generalized positions and p = [p1, p2, · · · , pN ]T repre-
sents the generalized momentum. The Hamiltonian H(q,p)
is defined as a scalar function of q and p. The standard
Hamiltonian differential equations for conservative mechanical
systems are given by [8]:

dq

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂q
(1)

The state space with local coordinates (q,p) is called the
phase space. The Hamiltonian H is the total energy of the
system. Using (1), it can be shown that the total energy is
conserved:

dH

dt
=

∂TH

∂q

dq

dt
+

∂TH

∂p

dp

dt
= 0 (2)

(1) implies that moving coordinates in the direction of
symplectic gradient SH = (∂H∂p ,−∂H

∂q ) does not change the
total system energy. Hence, the trajectory of (q,p) can be
regarded as a contour of the Hamiltonian function H(q,p).

In many real-world physical systems, loss of energy to
the outside environment cannot be neglected. To model such
systems, nearly-Hamiltonian systems are studied by general-
izing Hamiltonian systems to dynamic systems with energy
dissipation [9]. The state equations of nearly-Hamiltonian
systems can be represented as:

dq

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂q
−D

∂H

∂p
, (3)

where D ∈ RN×N is a positive semi-definite matrix. −D∂H
∂p

describes the damping effects of the system. It can be deduced
that the derivative of H is non-positive,

dH

dt
=

∂TH

∂q

dq

dt
+

∂TH

∂p

dp

dt
= −∂TH

∂p
D

∂H

∂p
≤ 0 (4)

B. Formulate the SMIB System as a Nearly-Hamiltonian Sys-
tem

In power system stability analysis and control, the SMIB
model, shown in Fig. 1, represents the situation where a power
plant is connected to the rest of the power grid, which has
a much greater capacity than that of the plant [10]. This
model has been used to analyze the fundamental dynamic
phenomena occurring in power systems. In this paper, we
focus on this basic model to introduce the Nearly-Hamiltonian
neural network. In the future, we plan to learn more complex
power system dynamics using the NHNN.

Fig. 1. SMIB system

The swing equation for the SMIB system is given by [1]:

m1δ̈ + d1δ̇ +B12V1V2 sin(δ)− P1 = 0, (5)

where m1 is the generator inertia constant, d1 represents the
damping coefficient, B12 is the bus susceptance of the line
between bus 1 and bus 2, V1 and V2 are the voltage magnitudes
at buses 1, 2. δ represent the voltage angles difference between
buses 1 and 2. The position and momentum coordinates are
defined as q = δ, p = m1δ̇, then (5) can be rewritten as:[

q̇
ṗ

]
=

[
0 1
−1 −d1

] [
B12V1V2 sin(q)− P1

p
m

]
(6)

The Hamiltonian H of the SMIB system satisfy:

∂H

∂q
= B12V1V2 sin(q)− P1 (7)

∂H

∂p
=

p

m
(8)

Thus, the Hamiltonian function can be derived as:

H = −P1q −B12V1V2 cos(q) +
p2

2m1
(9)

With the Hamiltonian definition, (6) can be rewritten as:[
q̇
ṗ

]
=

[
0 1
−1 −d1

][∂H
∂q
∂H
∂p

]
(10)

C. Learning SMIB System Dynamics with a Nearly-
Hamiltonian Neural Network

Although HNN [8] has been shown to be quite effective
in learning the dynamics of physical systems that conserve
energy, it is infeasible to apply it to learn the dynamics
of the SMIB system when the damping effects are taken
into consideration. In this subsection, a new physics-informed
machine learning model called Nearly-Hamiltonian neural



network (NHNN) is proposed to learn the Hamiltonian and
damping coefficient concurrently.

The architecture of the baseline neural network, HNN and
NHNN are shown in Fig. 2. The baseline neural network tries
to learn the differential equations, that is:

[
q̇ ṗ

]
= fθ(q,p),

where fθ(q,p) is a neural network with parameter vector θ.
Here the baseline neural network is a multilayer perceptron.
Similarly, the HNN takes q and p as inputs. Instead of learning
the differential equations directly, HNN first aims at learning
the Hamiltonian H of the system. Then the derivatives of
the states q̇ and ṗ can be automatically calculated using (1).
HNN yields a better performance in the task of learning the
dynamics of energy conserving systems.

The proposed NHNN augments the architecture of HNN
by considering the damping effects in the nearly-Hamiltonian
system. Let the state variables x be the combination of the
generalized positions and momentum (q,p). Then the nearly-
Hamiltonian system can be rewritten as a linear combination
of the gradient of the Hamiltonian: ẋ = (J − R)∇H . The
matrix J is skew-symmetric and R is positive semi-definite
and can be uniquely identified. In the SMIB system, J and R
are 2× 2 matrices defined as:

J =

[
0 1
−1 0

]
, R =

[
0 0
0 −d1

]
(11)

Now the matrix J − R can be embeded into the HNN
architecture, leading to the NHNN framework as shown in
Fig. 2. The NHNN has three essential modules. The first
module approximates the parameterized Hamiltonian function
Hθ using (q,p) as inputs. The second module automatically
calculates the gradient of the Hamiltonian ∇H . The third
module estimates the gradients of the generalized positions
and momentum (ˆ̇q, ˆ̇p) using ∇H and elements of the matrix
J−R. Note that this matrix includes the damping coefficient
d1 that needs to be learned. The last module can be represented
in matrix form as:[

ˆ̇q
ˆ̇p

]
=

[
0 1
−1 −d1

] [∂Hθ

∂q
∂Hθ

∂p

]
(12)

The parameters of the approximate Hamiltonian function
θ and damping coefficient d1 will be iteratively updated by
performing stochastic gradient descent with the following loss
function:

L = ∥ˆ̇q − q∥22 + ∥ ˆ̇p− p∥22 (13)

Note that this loss function is shared among all three neural
network architectures.

III. NUMERICAL STUDIES

In this section, a SMIB system is set up to evaluate the
system trajectory and parameter estimation performance of
the proposed and baseline machine learning algorithms. Both
the training and testing results of the baseline neural network,
HNN and NHNN will be demonstrated in detail.

Fig. 2. Architecture of baseline neural network, HNN and NHNN

A. Set up of the SMIB Dynamic System

In this subsection, we set up the simulations for the SMIB
dynamic system shown in Fig. 1. The full fault sequence will
be modeled, which can be broken down into three stages [11].

Stage 1: The power system is in the prefault steady state
condition with state variables (q0, p0);

Stage 2: A sudden fault occurs at t = 0 on the transmission
line and the fault is severe enough to cause the circuit breakers
(CBs) to open. In this stage, the system model (5) reduces to:

m1δ̈ + d1δ̇ − P1 = 0 (14)

Stage 3: CBs reclose at time t = τ . Note that at the end of
stage 2, the state variables are changed to (qτ , pτ ).

In the case study, it is assumed that the inertia coefficient
m1 = 0.4, the mechanical power P1 = 0.1 p.u., the voltage
magnitudes V1 and V2 are equal to 1 p.u., and B12 = 0.2 p.u.
The above mentioned basic model parameters are assumed
to be fixed throughout the numerical studies. On the other
hand, the damping coefficient d1 varies in different dynamic
simulations and its value will be chosen from the following
set {0.00, 0.01, 0.02, 0.05, 0.10}. Note that p0 is always equal
to 0 because the momentum is zero in equilibrium states.
When the initial position q0 in stage 1 and the fault duration
τ of stage 2 are chosen, different system trajectories in both
stage 2 and 3 are obtained. Fig. 3 illustrates the comparison
between different values of q0, τ and d1. During stage 2, the
state variables move further away from the equilibrium point.
With certain fault duration and damping coefficient, the system
gradually shifts back to a steady state condition.

For each damping coefficient, 40 transient trajectories with
time step length of 1

10s and time interval [0, 10s] are generated
by choosing different q0 and τ . q0 has a uniform distribution
on the interval [0, 1] and τ follows a uniform distribution on
the interval [0.1s, 2.1s]. Note that the SMIB system is transient
stable under these settings. The proposed and baseline neural
networks are trained to learn the system dynamics in stage 3,
which is characterized by (5). The 40 transient trajectories for
each damping coefficient in stage 3 is generated by performing
dynamic simulations with different initial values of (qτ , pτ ).



Fig. 3. Sample trajectories of (q, p) given different values of q0, τ and d1

The dynamic simulations’ solver is Runge-Kutta with relative
tolerance equal to 10−10.

Next, measurement noise are superimposed on the generated
trajectories. Is it assumed that the measurement noises on the
position and momentum coordinates (q, p) follow Gaussian
distributions: eq ∼ N(0, 0.05) and ep ∼ N(0, 0.01). Note that
in practice, q usually cannot be directly measured and must
be computed based on the measurements from PMUs.

B. Set up and Training of the Proposed and Baseline Machine
Learning Algorithms

The proposed NHNN, the Baseline NN and the HNN share
the same set of hyper-parameters. The input and output layers
all have 2 neurons. There is 1 hidden layer with 200 neurons.
The activation function is tanh. The full batch training ap-
proach is taken. The model parameters θ of NHNN, HNN,
and the Baseline NN are initialized as an orthogonal matrix.
d1 of the NHNN is initialized as 0. Automatic differential
package “torch.autograd” is used to calculate the gradient of
Hamiltonian H in the training process and Adam optimizer
[12] is used to update the model parameters.

The total number of training iterations is selected to be
1000. The training losses of all models quickly reduces as
the iteration number increases. As shown in Table I, when
the damping coefficient is less than 0.1, the final training loss
of both NHNN and HNN are much lower than that of the
Baseline NN. With a large damping coefficient, the NHNN’s
loss function is significantly smaller than that of the HNN.

C. Trajectory and Parameter Estimation Results

Once the parameters of the baseline NN, HNN and NHNN
models are trained, they can be used estimate (q̇, ṗ) at any
given coordinate (q, p). With the ability to estimate (q̇, ṗ), all
three neural networks can be used to solve the initial value
problems directly for the post-disturbance system (5).

TABLE I
THE TRAINING LOSS OF THE BASELINE NN, HNN AND NHNN

Damping Final training loss (10−4)
Coefficient Baseline NN HNN NHNN
d1 = 0.00 4.37 3.39 3.39
d1 = 0.01 4.25 3.79 3.37
d1 = 0.02 4.12 3.46 3.35
d1 = 0.05 5.45 3.85 3.39
d1 = 0.10 3.52 4.42 3.46

The post-disturbance testing trajectory that the proposed
and baseline neural network try to estimate are generated as
follows. First, the initial post-fault state (qτ , pτ ) is generated
from (q0, p0) following the full fault sequence as described in
Section III-A. p0 is set to be 0. q0 and τ are randomly sampled
from the same uniform distribution described in III-A. Then,
we use the fourth-order Runge-Kutta integrator to generate
the sample trajectory in stage 3. Note that the neural network-
based trajectory estimation only uses the initial post-fault state
coordinates (qτ , pτ ) as the inputs.

Fig. 4. Ground truth and predicted trajectories with mean squared errors

The ground truth and predicted transient trajectories to-
gether with mean squared error (MSE) for the predicted
trajectories of all three neural networks can be found in Fig.
4. In the case of d1 = 0, both HNN and NHNN yield more
accurate prediction of transient trajectory than that of the
baseline neural network. When damping effects are modeled
(e.g., d1 = 0.02), the predicted trajectory by NHNN model
almost completely coincide with the ground truth trajectory,
while the trajectory predicted by HNN and Baseline NN
diverge from the ground truth. The ground truth and estimated
total energy of the SMIB system at different time stamps are



also shown Fig. 5. It can be seen that the proposed NHNN
model outperforms the baseline NN and HNN in capturing the
change in the total system energy yielding a lower MSE.

Fig. 5. Ground truth and predicted total energy of the SMIB system

The proposed NHNN model can also estimate the damping
coefficient d1 of the generator. The estimation results are
shown in Table II. It can be seen that the damping coefficient
estimation of the NHNN model is extremely accurate with
absolute percentage error less than 1% in all five scenarios.
Note that the performance of the proposed NHNN is not
sensitive to the change in sampling rate of the sensors such
as PMUs. Further increasing sampling frequency from 10 to
30 Hz has negligible impacts on reducing the trajectory and
parameter estimation error. It is also discovered that the length
of the training trajectories need to cover at least a full cycle of
voltage angle fluctuation to yield reasonable prediction results.

TABLE II
ESTIMATION RESULT OF THE DAMPING COEFFICIENT

d1 Estimated d̂1 Absolute Percentage Error (%)
0.00 -0.0004 0.04
0.01 0.0095 0.05
0.02 0.0193 0.07
0.05 0.0481 0.19
0.10 0.0946 0.44

IV. CONCLUSION

In this paper, an innovative NHNN is proposed to learn
power system dynamics. By embedding the energy conser-
vation law in the neural network architecture, the NHNN is
capable of accurately tracking the total energy change without

using the explicit functional form of the differential algebraic
equations. Numerical study results on the SMIB system show
that the NHNN significantly outperforms the baseline neural
network and the HNN in terms of transient trajectories and
damping coefficient predictions for both conservative and
dissipative scenarios. In the future, we plan to further extend
the proposed NHNN to learn the dynamics of larger power
systems, which have more complicated differential algebraic
equations without analytical solution for the Hamiltonian.
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