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ABSTRACT California has set ambitious decarbonization goals concerning both emissions and the portion
of energy generated by renewable resources. However, climate change poses considerable uncertainties.
Variation in load is driven both by the level of electrification as well as the impact of climate change
on weather. Further, climate change stands to make weather more variable, impacting not just load but
generation from renewable resources. In this paper, we approach the issue of the impacts of climate change
on decarbonization planning from two perspectives. First, we look at the range of decarbonization pathways
through 8 pathways that account for differences in socioeconomic development, global emissions, and
warming. Second, we develop amore robust way of ensuring the reliability of energy resources planning than
the commonly used planning reserve margin. We show that the proposed method can save between 6 and 14
billion dollars in investment and maintenance costs and outline critical policy implications concerning the
reliance of power plants for satisfying planning reliability requirements, including the potential retirement
of dozens of peaker power plants.

INDEX TERMS Climate change, decarbonization, power system planning, reliability.

Nomenclature
Sets
t,T Index, set of hour
w,W Index, set of representative period
wr ,Wr Index, set of resiliency period
y,Y Index, set of year
d ,D Index, set of probabilistic day
n,N Index, set of net load duration
g,G Index, set of generation and storage resources
u,U Index, set of thermal unit
s, S Index, set of storage resource
r ,R Index, set of renewable resource
h,H Index, set of large hydro resource
z,Z Index, set of balancing authority zone
l,L Index, set of line
Gz Subset of resources in zone z
Loads and Generation
Lz,t Load in zone z at time t (MW)
NLz,t Net load in zone z at time t (MW)

vu,t On/off status of unit u at time t (1, 0)
pg,t Power output of resource g at time t (MW)
Pg Maximum output of resource g (MW)
Pg Minimum output of resource g (MW)
fl,t Flow on line l at time t (MW)
λl,z Incidency of line l on zone z
ctxl Wheeling cost of transmission line l ($/MWh)
PFr,t Production factor of renewable resource r at time t
pcurtr Curtailment of renewable resource r (MW)
ccurtr Cost of curtailment of resource r ($/MWh)
SUCu,t Startup cost of unit u at time t ($)
SDCu,t Shutdown cost of unit u at time t ($)
GCSu Generation cost slope of unit u ($/MWh)
GCIu Generation cost intercept of unit u ($/hour)
Storage
M Arbitrary large value
vs,t Storage s charge (0)/discharge (1) status at time t
pcs,t Storage s rate of charge at time t (MW)
pds,t Storage s rate of discharge at time t (MW)
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Cs,t Storage s state of charge at time t (MWh)
ηcs Storage s charge efficiency
ηds Storage s discharge efficiency
δs Storage s self discharge
ϵmaxs Storage s maximum state of charge fraction
Investment
esu Slope of emissions rate of unit u (tons/MWh)
eiu Intercept of emissions rate of unit u (tons/MWh)
el Emissions rate associated with line l (tons/MWh)
Ey Emissions cap in year y (tons)
IUu,y Install status of unit u in year y
IU p

u,y Planned install status of unit u in year y
IU b

u,y Build flag for unit u in year y
ICg,y Installed capacity of resource g in year y (MW)
ICp

g,y Planned capacity of resource g in year y (MW)
ICb

g,y Built capacity of resource g in year y (MW)
IC r

g,y Retired capacity of resource g in year y (MW)
ICEs,y Installed energy capacity of storage resource s in year

y (MWh)
ICEp

s,y Planned energy capacity of storage resource s in year
y (MWh)

ICEb
s,y Built energy capacity of storage resource s in year y

(MWh)
ICE r

s,y Retired energy capacity of storage resource s in year
y (MWh)

cmg Maintenance cost of generator g ($/MW)
cm,Es Energy maintenance cost of storage s ($/MWh)
ccapg,y Capacity cost of generator g in year y ($/MW)
ccap,Eg,y Energy capacity cost of generator g in year y

($/MWh)
Cgen
y Generation costs in year y ($)

Cm
y Maintenance costs in year y($)

C inv
y Investment costs in year y ($)

ωw Weight of week w
ωy Weight of year y

Acronyms
CAISO California Independent System Operator
ELCC Effective load-carrying capacity
GW Gigawatt
MILP Mixed-integer linear program
MW Megawatt
MWh Megawatt-hours
NQC Net qualifying capacity
PC Photovoltaic
PRM Planning reserve margin
RCP Representative concentration Pathway
SSP Shared socioeconomic pathway
UC Unit commitment

I. INTRODUCTION
California has set aggressive targets for power system decar-
bonization through Senate Bill 100 and Senate Bill 350, es-
tablishing limits on the minimum generation from renewable
resources and maximum emissions from power generation.
These targets are meant to address California’s contributions

towards climate change mitigation. However, climate change
in turn also poses adaptation challenges for these decar-
bonization goals.

Climate change, and the societal response to it, have a range
of potential impacts on the electrical grid. The level of electri-
fication that occurs in response to multi-sector decarboniza-
tion, such as transportation and buildings, will massively
impact both the shape and magnitude of load patterns [1].
Simultaneously, climate change itself may impact the level
of heating ventilation and air conditioning (HVAC) demand
and the efficiency of electric assets as temperatures rise.
Weather, and thus both load and renewable generation, will
likely become even more volatile towards the middle of the
century. This study seeks to address some of the challenges
that climate change poses to the decarbonization pathways of
California’s electrical grid.

The impacts of climate change and associated increase in
uncertainty will be examined through two lenses. The first
lens is climate change pathways, with a set of scenarios
that span a broad but plausible range of climate scenario
uncertainty, climate model uncertainty, and socioeconomic
and policy scenario uncertainty. These scenarios are derived
from models in the Coupled Model Intercomparison Project
Phase 6 (CMIP6) climate model archive, also utilized by
the Intergovernmental Panel on Climate Change (IPCC). The
second is a new approach towards ensuring resilient capacity
planning, which leverages joint load-renewable generation
forecasts in the face of climate change.

Large investments in electrical resources are expected over
the coming decades to meet decarbonization targets. As such,
capacity expansion modeling or generation expansion plan-
ning have been increasingly important for planning these
investments, with models such as RESOLVE [2], Gridpath
[3], and REEDS [4] used by various state agencies and load-
serving entities. Due to computational limitations in capac-
ity expansion modeling, it is typical to reduce the temporal
dimension by modeling representative periods instead of all
8760 hours per year [5]. The goal of selecting representative
periods is to choose a set of periods which, in tandem, best
represent the year as a whole. However, some of the most
stressful periods on a power grid account for only a few
days per year, or may not even occur each year. Because
these fringe cases account for so little of the yearly behavior,
they will not naturally be selected as representative periods.
However, they still must be planned for to ensure enough gen-
eration capacity is held to reliably operate the grid. Thus, it is
necessary to enforce some constraint on reliability. Typically,
this is done via a planning reserve margin (PRM) constraint
[6]. However, this constraint is overly rigid, as the parameters
of this constraint are determined exogenously to the genera-
tion portfolio optimization. Thus, this constraint could lead to
generation portfolios that are either overly cautious, or fail to
respond to periods of low renewable generation.

Ensuring power system planning produces generation port-
folios that are reliable has been a task of increasing im-
portance. In the past, the generation mix was dominated
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by thermal units, which can generate at full-capacity except
for outages or derates. This simplified reliability planning
because it ensured dispatchability in resources and allowed
grid operators to adjust output based on demand. As the
penetration of variable renewable energy increases, reliability
planning is becoming increasingly difficult due to the unpre-
dictability of meteorological patterns and the timing of gen-
erator availability (lack of dispatchable resources). A large
amount of work in recent years has been devoted towards this
task as well as studying the effects of rare weather events on
reliability.

PRM requirements ensure a specified amount of generation
capacity is held, and are sized according to the projected
peak demand. Each resource in a system contributes towards
the requirement as a fraction of its nameplate capacity. In
the typical formulation of this approach, this fraction con-
veys how much of the resource’s capacity is equivalent to
firm capacity, such as in [7] and California Public Utilities
Commission (CPUC) resource adequacy requirements before
2018 [8]. However, for highly variable resources like wind,
solar, and energy storage, distilling this complex variability
into a single fraction is difficult. The behavior of wind, solar,
and load are highly coupled due to the underlying weather
dependency. The combined contributions of wind, solar, and
energy storage are non-linear, as the contribution of storage
is limited by both power and energy. To address this non-
linearity, the effective load-carrying capacity (ELCC) has
been proposed, and adopted by regulators including CPUC
[9]. The ELCC allows for more accurate quantification of the
load-carrying contributions of variable energy by accounting
for the impact of renewable energy on net load. While the
development of ELCC has improved PRM constraints, the pa-
rameters of this formulation are still determined exogenously,
leading to inherent loss of accuracy. An overview of modern
reliability studies focusing on the ELCC of renewables is
given in [10]. In [6], the authors discuss the recent trend
in exceeding PRM requirements, primarily due to techno-
economic factors, as well as the impacts on planning studies
accounting for the required and actual implemented margins.
Ssengonzi et al. [11] analyze the ELCC of renewables across
the United States, but neglect storage, which has a synergistic
effect when coupled with variable renewables. Cole et al.
[12] study resource adequacy contributions under a range of
variable resource penetrations. Bera et al. [13] present a study
of resource adequacy focusing on the sizing of energy storage
in systems with high renewable penetration.

It is common to apply a Monte Carlo simulation approach
to evaluating resource adequacy, as in [14] and the current
approach used by the California Public Utilities Commission
[15]. While these approaches are effective at evaluating re-
source adequacy of a fleet after the system planning step, it
is impossible to perform system planning over such a large
temporal domain without significantly sacrificing the level of
modeling detail used to represent dispatch, as is done in [16].

There is also a developing body of work around the selec-
tion of extreme events within representative period selection.

For example, Scott et al. [17] select extreme weather periods
as initial cluster centers in representative period selection. A
range of approaches to representative period selection with
extreme periods is examined in [18]. In [19], extreme days are
added as representative periods in a second optimization step
based on the costs associated with dispatch of the portfolio in
the first optimization step. The authors in [20] select extreme
periods as those periods with peak load. An iterative approach
to ensuring reliability is proposed in [21], with each iteration
adding the day with maximum lost load as a representative
period, until the portfolio satisfies reliability metrics. These
works, however, do not study the inclusion of extreme periods
as a direct replacement to industry-standard PRM,making the
comparison of these methods difficult.

TABLE 1. Comparison of previous efforts towards reliable planning.

Suitable for
planning

Industry accepted
reliability standards

Variable
resource
modeling

PRM ✓ ✓ Poor
PRM

with ELCC ✓ ✓ Good

Resource Adequacy
Studies x ✓ Better

Extreme event
selection ✓ x Better

Resiliency days
(proposed) ✓ ✓ Better

In this study, we demonstrate that PRM-based reliability
constraints are inflexible, and thus may lead to suboptimal
generation fleets from planning solutions. In the case study
of the California electric grid, PRM results in substantial
overemphasis of thermal capacity for reliability needs. Many
of the references above acknowledge the complex interac-
tions between various classes of resources. These nuances are
addressed through direct simulation of challenging dispatch
conditions called resiliency periods. The comparison between
the proposed work and previous efforts toward reliable plan-
ning is summarized in Table 1. The proposed method is
shown to meet the level of required reliability threshold at
cost savings as high as 14 billion dollars through 2045. The
contributions of this study are as follows:

• Detailed study analysing how California’s power system
decarbonization plan is impacted by a range of socioe-
conomic and warming pathways.

• Development of novel resilient power system planning
formulation.

• Demonstration that California’s status quo planning ap-
proach may undervalue renewables and storage for reli-
ability, leading to overreliance on gas-fired generation.

The remainder of the paper will be organized as follows.
Section II will present the formulation of the planning model,
including the proposed resilient planning method. Section III
describes the Lagrangian relaxation-based solution method-
ology. Section IV discusses the numerical study and experi-
mental results.
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II. TECHNICAL METHOD
The decarbonization planning problem is formulated as a
mixed-integer linear program over two timescales. The hourly
timescale concerns dispatch or unit commitment, scheduling
generation to meet demand and ancillary service require-
ments. The yearly timescale concerns investment decisions.
Decarbonization is implemented through constraints on car-
bon emissions and renewable generation, which link the two
timescales. The model described in this section is derived
from [22]. The full formulation can be found in the referenced
material, and a compact formulation is presented below as
it pertains to the climate scenario analysis and novel climate
resilient planning method. As a placeholder, Ω will be used
to generically represent the constraints which are modeled
but not developed in detail. Although not complete, the con-
straints presented here provide a general overview of the
planning model, sufficient for the discussion of the scenario
analysis and novel planning method. Subsection II-A for-
mulates the unit commitment model. Then, Subsection II-B
integrates unit commitment into the broader decarbonization
model. Finally, Subsection II-C develops the novel method
for enabling climate resilient planning.

A. UNIT COMMITMENT
Unit commitment (UC) is modeled hourly in segments of
length T . In this section, UC will be discussed for an arbitrary
year y and representative period w. As such, the variables in
this section are formally time-indexed by the tuple (y,w, t),
but the index of year and period will be hidden for brevity.
In planning, constraints which link years and representative
periods will be developed and will consider the full index.
We will discuss in brief the constraints of unit commitment,
but not formulate every constraint. The full UC formulation
used can be found in [22], which is based on the formulation
in [2].

1) Generation Resources
Generation resources are broken into five basic classes based
on their unique operational characteristics: gas-fired thermal
units, renewable resources, firm generation, large hydro, and
storage resources. The full set of generation and storage
resources is given as G, with these classes belonging to that
set: U ,R,H , S ⊂ G.
Thermal Units. Thermal units refers to combustion-based
power plants. This includes coal plants, combined-cycle gas
turbines, steam turbines, aeroderivative combustion turbines,
and peakers. The commitment (on/off) status of thermal units
is modeled as a binary vu,t . These units are subject to many
constraints, including minimum and maximum power (1),
minimum uptime and downtime, startup and shutdown power
limits, and ramp limits. These constraints will be considered
the set Ωu.

Puvu,t ≤ pu,t ≤ Puvu,t , ∀u ∈ U , t ∈ T (1)

Renewable and Firm Resources.

Renewable resources include utility-scale solar and wind,
as well as aggregated behind-the-meter solar photovoltaic
(PV). Firm resources denote biofuel, geothermal, small hy-
dro, and nuclear. Renewable resources and firm resources
are grouped together as they have broadly similar modeling
characteristics, generating according to a fraction of their
nameplate capacity. The generation of each resource (2) is
the product of rated capacity ICr,y and hourly factor PFr,t ,
minus curtailment pcurtr,t . Firm resources are grouped with
renewable resources as they have broadly similar behavior.
Firm resources are not variable on the hourly scale, but some
firm resources like small hydro generation vary by season.
Firm resources cannot be curtailed, so pcurtr,t = 0 for firm
resources. There are further curtailment constraints for re-
newables, including for behind-the-meter solar PV. The set
of all constraints of renewable and firm resources will be
referred to as Ωr .

pr,t = ICr · PFr,t − pcurtr,t , ∀r ∈ R, t ∈ T (2)

Large Hydro Units.
Dispatchable hydropower resources are referred to as large

hydro units. The output of these units is given by ph(t) and
is constrained by an energy budget, minimum and maximum
power limits, and ramping limits. These constraints will be
referred to with the set Ωh.
Storage Resources.

Storage resources, consisting of battery and pumped stor-
age, are an increasingly vital component of the energy re-
source fleet as the penetration of variable renewable resources
increases. The charge/discharge status of these resources
is represented by binary vs,t , which prevents simultaneous
charge and discharge and allows for enforcing duration con-
straints in pumped storage. This is modeled as:

0 ≤ pcs,t ≤ (1− vs,t)M, ∀s ∈ S, t ∈ T (3)

0 ≤ pds,t ≤ vs,tM, ∀s ∈ S, t ∈ T (4)

The charge and discharge power of these resources are given
by pcs,t and p

d
s,t , respectively. The maximum output of these

resources is characterized by their energy capacity (MWh)
and power capacity (MW). These units are subject to min-
imum and maximum power and state of charge constraints,
minimum duration constraints for pumped storage, and state
of charge tracking (5). The full set of constraints for storage
resources is given as Ωs.

Cs,t = (1− δs)Cs,t−1 + (pcs,tη
c
s − pds,t

1

ηds
)× 1 hour ,

∀s ∈ S, t ∈ T (5)

2) Zones and Lines
As discussed in the introduction, the present study principally
concerns decarbonization within California. Accordingly, a
zonal unit commitment model is used which focuses on Cal-
ifornia. The model represents the Western Interconnection in
zones: the California Independent SystemOperator (CAISO),
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three small balancing authorities in California (LADWP, IID,
BANC), and two out-of-state balancing authority aggrega-
tions in the Northwest and Southwest.

Transmission is modeled using a transport model, treating
line flows fl,t as a decision variable rather than incorporat-
ing a power flow formulation. This allows for an effective
representation of zonal interconnection and greatly reduces
the complexity associated with solving optimal power flow.
Each line has a reference direction, and flow can be positive or
negative in relation to that reference direction. The incidence
of lines is given by λl,z, where 0 denotes non-incidence of line
l on zone z, and +1 denotes reference direction of line l into
zone z. Line flows are subject to transmission capacity limits,
and the set of all transmission constraints are given by Ωl .

3) Load and Reserve Requirements
Zonal power balance constraints enforce that, for each zone,
generation and net imports are equal to load and net exports.∑

u∈Uz

pu,t +
∑
s∈Sz

(pds,t − pcs,t) +
∑
r∈Rz

pr,t +
∑
h∈Hz

ph,t

+
∑
l∈L

λl,zfl,t = Lz,t ,∀z ∈ Z , t ∈ T (6)

To ensure reliable grid operation, CAISO must additionally
provide for ancillary services. These include load following
up and down, regulation up and down, spinning reserve, and
frequency response. Ancillary service constraints are given as
Ωas.

4) Operation Cost
Finally, the total weekly cost of operation is the sum of fuel,
startup and shutdown, curtailment, and transmission costs,
and the objective function is given as the minimization of
these costs:

min Cgen (7)

where Cgen =
∑
t∈T

∑
u∈U

{
SUCu,t + SDCu,t

+ (GCIu · vu,t + GCSu · pu,t)× 1 hour
}

+[
∑
t∈T

∑
l∈L

fl,t · ctxl +
∑
t∈T

∑
r∈R

ccurtr · pcurtr,t ]× 1 hour .

(8)

B. DECARBONIZATION PLANNING
In this section, the unit commitment formulation developed
above is integrated into decarbonization planning. Decar-
bonization planning incorporates dispatch over multiple pe-
riods and years, while allowing for the development and
retirement of resources and constraining operation according
to policy. The goal is to identify an investment strategy which
minimizes the cost of investment, maintenance, and opera-
tion, while satisfying operational and policy constraints.

The present study is concentrated on decarbonization of
California’s electrical grid. As such, investment and policy
constraints are only applied to CAISO, themain balancing au-
thority in California. However, this formulation could readily
be applied to multi-zone decarbonization efforts.

1) Investment
Candidate resources include various renewable resources, en-
ergy storage, and new higher-efficiency thermal units. Eco-
nomic retirement is also considered for existing power plants.
Each resource class interfaces with investment in a distinct
way.
The operational status of thermal units is given by IUu,y,

and is a function of the planned status of the unit alongside
build and retirement variables (9). The incremental build and
retirement status of a unit is given by binary variables ICb

u,y
and IC r

u,y, respectively, where IC
b
u,y = 1 indicates unit u was

newly built in year y. Within unit commitment, units can only
turn on if operational (10).

IUu,y = IU p
u,y +

y∑
Y=1

(IU b
u,Y − IU r

u,Y) (9)

IUu,y ≥ vu,y,w,t , ∀u ∈ U , w ∈ W , t ∈ T (10)

The investment of renewable and storage resources are con-
sidered continuous variables. The total installed capacity of
resource r in year y is defined as (11), where ICb

r (y) is the
incremental capacity added in year y. Investment in renewable
capacity interfaces with dispatch through ICr(y) in (2).

ICr,y = ICp
r,y +

y∑
Y=1

(ICb
r,Y − IC r

r,Y). (11)

The installation of power (12) and energy capacity (13) for a
storage resource are modeled separately through ICEs(y) and
ICs(y) respectively. While most energy storage technologies
do not have truly linearly-separable power and energy costs,
this simplification follows the modeling in [2] and allows the
model to optimize the duration of each storage resource.

ICs,y = ICp
s,y +

y∑
Y=1

(ICb
s,Y − IC r

s,Y) (12)

ICEs,y = ICEp
s,y +

y∑
Y=1

(ICEb
s,Y − ICE r

s,Y) (13)

The investment in storage interfaces with unit commitment
through operational bounds. The rate of charge or discharge
is limited to the installed power capacity: pcs,y,w,t ≤ ICs,y.
The state of charge upper bound are limited by Cs,y,w,t ≤
ICEs,y · ϵmaxs , and the lower bound similarly. For battery stor-
age resources, instead of operating from 0% to 100%, some
headroom and footroom is reserved in the interest of reducing
degradation. The upper operational range is thus defined by
ϵmaxs .

2) Policy Constraints - Decarbonization
The present planning problem implements decarbonization
through annual constraints on emissions and the proportion
of energy supplied by renewable resources. Although the
formulation is readily adaptable to multi-zonal decarboniza-
tion, we focus specifically on CAISO, and thus specify that
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z = 0 corresponds to CAISO in order to enforce the following
policy constraints only for CAISO.

In each year, the emissions associated with CAISO energy
generation are limited, including energy from imports. Emis-
sions of thermal units are modeled as proportional to fuel
consumption, via a slope and intercept term esu and e

i
u. Trans-

mission emissions are proportional to the imported MWh by
emission rate el . Transmission emissions are lower-bounded
by 0 to prevent exports from reducing the total emissions.

Ey ≥
∑
w∈W

ωw ·
∑
t∈T

(∑
u∈Uz

esu · pu,y,w,t + eiu · vu,y,w,t

+
∑
l∈L

el ·max(0, λl,zfl,y,w,t)
)
, z = 0. (14)

Renewable portfolio standards (RPS) ensure that a fraction
RPSy of the yearly total load be served by renewable re-
sources. As certain firm resources like nuclear are grouped
with renewables, a binary term RPSeligibler is used to enforce
eligibility towards RPS limits.

RPSy ·
∑
w∈W

∑
t∈T

ωw · Lz,y,w,t ≤∑
w∈W

ωw ·
∑
r∈R

∑
t∈T

pr,y,w,t · RPSeligibler , z = 0 (15)

3) Policy Constraints - Reliability
Due to the computational complexity associated with model-
ing 8760 hours per year, temporal downsampling is ubiqui-
tous, and is often achieved by modeling representative peri-
ods. The goal of selecting representative periods is to choose
a set of periods which, in tandem, best represent the year as a
whole. However, some of the most stressful periods, and thus
most important for reliability, on a power grid may be less
frequent than a few days per year. Given that representative
period selection is often limited to fewer than 37 days (i.e.
10% of the year), there is very low likelihood that these
low-frequency, high-importance events will be selected as
representative periods. However, accounting for these low-
frequency periods is critical to ensure enough generation
capacity is held to reliably operate the grid. Typically, this
is integrated through a PRM constraint.

PRM constraints (16) ensure that the generation fleet for
a given year can satisfy some factor above the forecasted
peak load. Resources typically count towards the PRM re-
quirement through a net qualifying capacity (NQC) or an
ELCC. Thermal units, and firm generation, generally have
an NQC close to 1, as they can typically generate at full
capacity except for rare occasions when unavailable due to
maintenance or other circumstances. The contributions of
solar, wind, and storage, are either modeled through NQC in
the simplistic case or ELCC. These resources are generally
associated with rather low NQC due to the high variability
of generation. In more detailed representations, contribution
of variable resources is modeled as a function of decreasing
value with increasing penetration. For example, California’s

gross load typically experiences daily summer peak around
5pm local time. With the proliferation of both behind-the-
meter and utility-scale solar PV, the net load peak has shifted
closer to 7pm, at which time solar generation is rapidly de-
creasing. Essentially, this resource is saturated at the peak
load time, and installing more solar will have little to no effect
on the peak net load. The ELCC of renewables and storage are
given by ELCCy and ELCC s

y , respectively. Further details of
the calculation of ELCC can be found in [22] and [2].

PRMy ≤
∑
u∈Uz

IUu,yPuNQCu + ELCC s
y

+ ELCCy +
∑
h∈Hz

ICh,yNQCh, z = 0. (16)

4) Costs
Three main cost components are considered: investment,
maintenance, and generation. These costs are assessed on a
yearly basis. Investment is typically not modeled for every
calendar year, so each year is associated with a weight ωy.
This weight encodes both the number of calendar years repre-
sented by y and a discount factor for the time value of money.
The cost associated with single-period dispatch was given

by (8), with one Cgeny,w for each y ∈ Y ,w ∈ W . Then, the yearly
cost of generation Cgen

y is a weighted sum of these generation
costs. The weight ωw encodes the portion of the year each
w ∈ W represents, such that

∑
w∈W ωw×||T || = 8760. Thus,

the generation cost for year y is given as:

Cgeny = ωy
∑
w∈W

ωwCgen
y,w . (17)

In each year, maintenance costs Cmy are assessed according
to the total capacity of each resource, given by (18). Ther-
mal units maintenance costs are assessed per unit, while
renewable resource maintenance costs are assessed per MW.
Storage resources have maintenance costs for both power and
energy capacity, cms and cm,Es respectively. By allowing for
economic retirement, resources that are no longer needed can
be retired to avoid associated maintenance costs.

Cmy = ωy

(∑
u∈U

IUu,y · cmu +
∑
s∈S

ICEs,y · cm,Es

+
∑
s∈S

ICs,y · cms +
∑
r∈R

ICr,ycmr +
∑
h∈H

ICh,y · cmh
)

(18)

Investment costs are annualized costs of constructing new
resources, given by (19). When a resource is built, the annu-
alized cost is charged for every subsequent year. Investment
cost components are assessed based on resource capacity in
the same manner as maintenance costs.

Cinvy =

(∑
u∈U

IU b
u,y · ccapu,y +

∑
s∈S

ICb
s,y · ccaps,y

+
∑
s∈S

ICEb
s,y · ccap,Es,y +

∑
r∈R

ICb
r,y · ccapr,y

)
·

|Y |∑
γ=y

ωγ (19)
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The objective function is then the sum of these cost compo-
nents over all years:

O =
∑
y∈Y

{
Cgeny + Cmy + Cinvy

}
. (20)

Finally, the optimization formulation is written as the mini-
mization of these costs, subject to all operational and invest-
ment constraints, in which Ω = [Ωu,Ωr ,Ωh,Ωs,Ωl ,Ωas]:

min O
s.t.,Ω, (6) ∀y ∈ Y ,w ∈ W , (21)

(9)− (11), (14)− (16) ∀y ∈ Y .

C. PROPOSED METHOD: RESILIENCY DAYS
As discussed in Section II-B3, reliability requirements are
often modeled by a yearly constraint on the fleet makeup.
The goal of this constraint is to serve as a surrogate for mod-
eling periods with extremely severe load conditions. There
is an inherent loss of fidelity associated with distilling a
dispatch problem into a constraint weighting capacities of
resources by predetermined factors, especially considering
the high variability of renewable resources. This modeling
approach is very rigid and it fails to rigorously account for
the correlation between load and renewable generation. As
demand is expected to be served dominantly by a mix of
variable renewables and storage, this is an extremely impor-
tant element. This approach also fails to account for complex
dispatch behaviors, such as ramping of thermal units.

Instead of constraining the fleet through predetermined
factors, we propose the direct simulation of extreme load
serving conditions. We adopt the name ‘‘resiliency periods"
to refer to these extreme periods, as a complementary to
representative periods. While representative periods seek to
embody the most typical behaviors of the power system,
resiliency periods seek to embody the most extreme periods
in order to directly ensure that enough capacity is held to meet
these demands. Similar to PRM, the rarity of resiliency period
events means these do not need to be considered for operating
costs or emissions constraints.

To do so, new sets are created corresponding to the re-
siliency period Wr and hour within each resiliency period
Tr . Resiliency periods do not necessarily need to have the
same length as representative periods. For example, resiliency
periods could model days (∥Tr∥ = 24), while represen-
tative periods could model weeks (∥T∥ = 168). As with
representative periods, resiliency periods link time within,
but not across periods. The index of year is the same, as
the resiliency requirements are enforced for each investment
interval. The optimization (21) can be rewritten to incorporate
these periods and omit PRM as:

min O
s.t.,Ω, (6) ∀t ∈ T ,w ∈ W , y ∈ Y , (22)

Ω, (6) ∀t ∈ Tr ,wr ∈ Wr , y ∈ Y
(9)− (11), (14)− (15) ∀y ∈ Y .

With this as the basic formulation behind using resiliency
periods to enforce resilient planning, we can move on to
discuss the selection of resiliency periods.

In general, the method described above can be used agnos-
tic to the manner in which the resiliency periods are selected.
However, it is suggested that they should reflect the accepted
standards which inform PRM calculations. For example, Cal-
ifornia uses the 1-in-10 standard, stating that the expectation
of loss of load should not exceed 1 event in 10 years.

Due to the increasing importance of renewable resources,
we propose the use of net load as the metric by which periods
are selected. Taking inspiration from the recently proposed
concept of compound energy droughts [23], we propose the
use of net load over various timesteps to properly capture the
effects of variability in renewable energy.

Net load is a combination of data (load, renewable gen-
eration factors) and model outputs (total installed capacity of
resources), so an iterative approach is required. First, the base
model is solved while omitting reliability constraints (16):

min O
s.t.,Ω, (6) ∀t ∈ T ,w ∈ W , y ∈ Y , (23)

(9)− (11), (14)− (15) ∀y ∈ Y .

This provides baseline capacities of the various resources,
which is necessary as it establishes a proper relationship be-
tween load in units of MW and unitless renewable generation
factors. Net load is then defined as:

NLz,y,d,t = Lz,t −
∑
r∈Rz

ICr,y · PFr,y,d,t (24)

For each year y ∈ Y , hourly net load metrics should be cal-
culated. For this discussion, it will be assumed that resiliency
periods are selected as 24-hour days. The discussion here is
immediately adaptable to periods of arbitrary length. A set
of days d ∈ D allows for a probabilistic interpretation of
load and generation shapes. The size, and members, of D
essentially bound the loss of load expectation. The approach
developed in the following section ensures that load can be
served for all days present in D. For instance, to meet or
exceed the 1-in-10 standard,D should include 3650 days. This
ensures that no load shedding occurs in the represented 10
years of input data. This method is readily tailored to other
reliability margins.

We propose calculating the net load for each year and se-
lecting resiliency days based on the maximum net load when
averaged over a specified duration. This is operationalized by,
for each day, rolling a window of length n through the day,
calculating the average net load for each, and selecting the
maximum (25).

NLnz,y,d = max(
1

n

t+n∑
t

NLz,y,d,t , ∀t ∈ [1, 24− n]) (25)
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Then, the day with the maximum n-hour net load is selected
as a resiliency period. This highest net-load day is referred to
as an n-hour net load peak.

Wr ← argmax
d

NLnz,y,d ,∀n ∈ N (26)

By selecting droughts of various lengths, a range of behaviors
in the correlation between renewable generation and load
can be represented. For example, the 1-hour drought corre-
sponds to the day with highest hourly net load and the 24-
hour drought corresponds to the day with highest average net
load. The set of all n-hour durations used to form the set of
resiliency periods Wr is given as N .

The proposed planning method is summarized in Algo-
rithm 1 and displayed as a flowchart in Fig. 1. First, the model
is solvedwithout PRMor other reliability constraints to estab-
lish baseline resource capacity, enabling the calculation of net
load for future years. Resiliency days are then selected based
on the net load peaks (26). Finally, the model is solved once
again with these resiliency days integrated, given as (22).

Algorithm 1: Decarbonization with Resiliency

Solve model without PRM (23);
Calculate net loads NLnz,y,d (24);
Select resiliency days (26);
Solve model with resiliency days (22);

Solve planning model
without PRM

Calculate net loads

Solve planning model
with resiliency days

Investment decisions

Resiliency days

OutputStep

FIGURE 1. Flowchart showing the proposed method for selecting and
planning with resiliency periods.

III. SOLUTION METHODOLOGY
Each of the optimization problems ((21), (22), (23)) areMILP
problems. Although commercial optimization solvers have
seen considerable performance improvements over recent
years, MILP models still generally suffer from combinatorial
complexity; computation time increases superlinearly with
increase in number of variables. While small MILP models,

like daily unit commitment, can be solved by commercial
solvers without difficulty, planning models quickly become
intractable due to their large temporal scope. To alleviate
this, it is common in power system planning to simplify the
model by reducing its level of detail, by some combination of
reduced temporal scope, relaxation of binary variables, and
clustering of thermal units. While this is effective at improv-
ing computation tractability, it reduces the fidelity between
dispatch in the planning model and real-world operation. In-
stead, surrogate Lagrangian relaxation is employed to ensure
the computational tractability of the highly detailed MILP
model. Although not a contribution of this work, being de-
rived from the solution methodology in [22], a brief overview
of the technique is provided for compactness.
We will develop the method with respect to the planning

model with PRM (21). The solution method can be similarly
applied to the proposed resilient planning model (22). This
approach begins by relaxing constraints in the primal problem
(21) to form a relaxed or dual problem. In our case, we relax
the zonal power balance constraints (6). Then, the violation
of the relaxed constraint is incorporated into the objective
function as the product of Lagrangian multipliers Λ. The
vector of constraint violations is given by R = [rz,y,w,t ,∀z ∈
Z , y ∈ Y ,w ∈ W , t ∈ T ]. Each constraint violation is
given by rz,y,w,t =

∑
u∈Uz

pu,y,w,t+
∑

s∈Sz(p
d
s,y,w,t−pcs,y,w,t)+∑

r∈Rz pr,y,w,t +
∑

h∈Hz
ph,y,w,t +

∑
l∈L λl,zfl,y,w,t − Lz,y,w,t .

Finally, the dual problem is given by:

min {O+ Λ · R}
s.t.,Ω ∀y ∈ Y ,w ∈ W , (27)

(9)− (11), (14)− (16) ∀y ∈ Y .

The fundamental idea of surrogate Lagrangian relaxation is
to iteratively solve the dual problem (27) while updating
the multipliers Λ according to the subgradients given by the
constraint violations R. In each iteration, rather than solving
the full problem over all decision variables, the variables of
only a small sample of thermal units are optimized, while the
remainder are fixed. All variables related to other resources
are optimized in each iteration. Thus, the performance in-
crease of themethod comes both from the relaxation of a com-
plex constraint and the combinatorial unwinding of binary
variables. For further discussion and details on the implemen-
tation of surrogate Lagrangian relaxation for decarbonization
planning, please see [22].

The surrogate Lagrangian relaxation method is guaranteed
to converge towards the optimal dual value, but it is both
difficult and unnecessary to converge to zero constraint vio-
lation. Instead, when the constraint violations are sufficiently
low, the thermal unit dispatch status are applied to the primal
problem. By solving the primal problem with a majority of
thermal units fixed to these values, a near-optimal solution
to the primal problem can be obtained in relatively low CPU
time.

In practice, only constraints from the representative periods
and not the resiliency periods are relaxed. The total number
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of resiliency hours should be much less than the total num-
ber of representative hours. Resiliency periods also interface
slightly less with the objective function, as the resiliency pe-
riods’ dispatch costs are not included. It should be understood
that there is nothing preventing power balance constraints in
the resiliency periods from being relaxed as well.

IV. NUMERICAL STUDY
In this section, we present a numerical study of the impacts of
climate, socioeconomic pathways, and the proposed resilient
planning method. First, the climate-generation-load dataset
which enables this study is discussed. Next, we examine
the planning results under a variety of scenarios. Then, a
comparison of planning results under the status quo PRM
reliability formulation and the proposed resiliency periods
formulation is presented. Finally, we outline some of the
policy implications of this study.

Outside of the climate dataset described next, the data used
in this study is taken from the RESOLVE implementation
published by the California Public Utilities Commissions [2].
This includes operational data, such as sizes and characteris-
tics of existing generators, economic data, such as fuel costs
and cost of new capacity, and policy data, such as emissions
limits. Investment is modeled from 2025 through 2045 in
5-year intervals, with financing through 2065. We model
representative periods of 3-day length and resiliency periods
of 1-day length. Representative periods are selected using the
approach in [5]. Resiliency periods are selected for net load
peak durations of 1, 4, 12, and 24 hours. For the resiliency
periods in (22), we also account for a 5% derate for generators
in the resiliency period, based on the NQC for these units
defined in [2].

A. CLIMATE, LOAD, AND GENERATION DATASETS
This study is enabled by recent publicly-available load and re-
newable generation projection datasets developed bymultiple
projects at the Pacific Northwest National Laboratory [24].
Load and renewable generation projections are considered
in tandem, and because they are both based on the same
underlying climate projections, the time series will be prop-
erly correlated. The correlation between load and renewable
generation is important, so we specifically avoidMonte Carlo
approaches which generally sever this correlation. As noted
in [23], there are correlations between periods of high load
and low renewable generation which may have extremely
large impact for future grids relying heavily on variable re-
newables. The renewable generation projections also account
for climate impacts such as solar panel efficiency loss as
temperatures increase and the suppression of wind generation
under high pressure conditions.

The climate, load, and generation projections are based
on 40-years (1980-2019) of historical meteorology. The use
of historical meteorology results in the dataset containing
actual historical extreme events. The climate methodology
then takes the 40-year sequence of historical weather and
repeats it twice into the future (from 2020-2059 and again

from 2060-2099) for eight unique scenarios that reflect a wide
but plausible range of future climate and socioeconomic con-
ditions. The details of this approach are provided in [25]. The
eight future scenarios are defined jointly by a combination
of Representative Concentration Pathway (RCPs 4.5 and 8.5)
and Shared Socioeconomic Pathway (SSPs 3 and 5). They
also reflect a range of climate model uncertainties by using
warming levels from climate models that are hotter and cooler
than the multimodel mean.
The RCP scenario impacts load through both climate-

related impacts, such as higher temperatures increasing the
load from air conditioning, as well as the level of electrifi-
cation needed to meet the emissions target. The SSPs impact
load through the level of consumption, economic expansion
and population growth. The RCP and the warming levels both
affect the production factors of renewable generation though
both technological (e.g. solar panel derating) and climate (e.g.
heat dome wind suppression), while maintaining physical
consistency.
The RCP 4.5 and 8.5 pathways are denoted by R4 and R8,

respectively. The SSP 3 and 5 pathways are denoted by S3
and S5, respectively. The cooler and hotter climate model
outcomes are denoted by the suffixes ‘‘C’’ and ‘‘H’’, respec-
tively (i.e. R4S3C, R4S3H). Details of the various scenarios
are provided in [26].
To produce the data used in this study, the 40 years of

historical and 80 years of future meteorology across the eight
scenarios are then run through a series of load and renewable
generation models to produce hourly time series of histori-
cal and projected load and renewable generation. The load
projection model accounts for the hour-to-hour variations in
demand due to weather (including extreme events like heat
waves and cold snaps) and grows loads over time to reflect
longer-term changes in population, economics, and energy
policy (for example, electrification needs to stay on an RCP
4.5 pathway). For each 1/8th degree grid cell, a hypothetical
wind and solar plant was modeled with generic assumptions
about solar panel and wind turbine configurations. The details
of the models used in this process are provided in [23] and
[26]. Each scenario takes approximately 3 hours to solve
in the climate pathways case, and approximate 5 hours for
planning with resiliency periods, due to the increased number
of simulated hours.

B. RESULTS
1) Climate Pathways
First, we examine the impacts of each of the scenarios on the
2045 fleets. The newly installed capacity in CAISO in each
scenario is shown in Fig. 2. It is not surprising that different
pathways force different levels of investment based on the
amount of associated load growth. These results do, however,
emphasize the need to account for the wide range of planning
outcomes of different pathways. The buildout of renewables
is as low as 50GW and as high as 87.5GW, and the buildout
of energy storage is as low as 32.6GW and as high as 47GW.
It is vital that this range is understood, even if these extremes
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represent relatively less-likely scenarios. The investment over
time is shown in Fig. 3 for both warming pathways of two of
the climate scenarios. Not only do warming pathways affect
the total amount of clean capacity needed to achieve decar-
bonization by 2045, but also the optimal intervals in which to
make these investments, with both hotter scenarios favoring
later investment as compared to their cooler counterparts.
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FIGURE 2. Comparison of capacity added to CAISO fleet under different
climate pathways, demonstrating the extreme variation in required
capacity.
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FIGURE 3. Comparison of investment over time for the R4S3 and R8S5
scenarios with both cooler and hotter warming pathways.

The evolution of the fleet can also be evaluated through
its spatial distribution. Fig. 4 shows maps of the investment
in storage and renewable projects for two years and two
scenarios. These two scenarios are the most moderate of the
four pathways examined. In 2030, there are relatively few dif-
ferences between the two scenarios. In 2045, the differences
become apparent, with substantially more investment in solar
in southern California, more wind in southern Nevada, and

more storage in both northern and southern California for the
R8S5H scenario compared to the R4S5H scenario.

R4
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R8
S5

H

Solar
Wind
Storage
5GW
10GW
20GW

FIGURE 4. Map depicting the installation of storage and renewable
projects for 2030 and 2045 across R8S5H and R4S3H, with major
differences highlighted.

Besides climate pathways, it is also critical to plan for a
range of warming scenarios. Although the RCP4.5 scenarios
have nearly identical fleets between the hotter and cooler
warming scenarios, the RCP8.5 scenarios have notably dif-
ferent fleets. The hotter and cooler warming scenarios have
nearly the same annual load, but the hourly loads in the hotter
warming scenarios are concentrated slightly more towards the
tails of the distribution. In the RCP8.5 pathway, the hotter
scenarios have 16% and 21% higher renewable installations
than the respective cooler scenarios. This is an early affect
of climate change on load and renewable generation, and
these trends will become even more severe after 2045 if the
higher global emissions pathway is followed. These results
also raise the issue of adaptability and mitigation. Towards
the mid-century and onwards, effects of climate change are
more uncertain, and so therefore are its impacts on load and
generation. In turn, this can make planning more difficult,
and thus requiremore potential investments tomeet emissions
targets.

2) Planning with Resiliency Periods
We present the results of two planning regimes: PRM and re-
siliency day planning. The PRMplanning regime corresponds
to the approach currently employed by the California Public
Utilities Commission and California Energy Commission for
their decarbonization planning studies [2]. The performance
is evaluated using two scenarios. The R8S5C scenario is the
closest match in terms of yearly load to California Energy
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Commission’s most recent integrated energy policy report
(IEPR) load forecasts. The R4S3H is the next closest match,
but has slightly lower loads. For reliability considerations,
we merge the hotter and cooler pathways together. In other
words, to convey the variability of a warming climate, both
cooler and hotter perturbations are used for the determination
of PRM and selection of resiliency periods. Representative
periods, however, are chosen for R8S5C and R4S3H.

We compare the results of these techniques in three ways.
The first is the comparison of total cost, as well as direct
comparison of fleet composition. The second is the loss-of-
load-expectation of each fleet. The third is a study of what
margin above the peak load could be served by each fleet.

TABLE 2. Costs, billions 2025$

R8S5C R4S3H
PRM Resil. PRM Resil.

Total Cost 365.7 351.2 329.6 322.8
CA Cost 214.9 200.6 179.3 173.3

Maint. Cost 34.8 33.1 29.6 27.6
Inv. Cost 162.3 150.6 131.4 127.8

CA Op. Cost 17.8 16.8 18.3 17.9

As shown in Table 2, in the R8S5C scenario, the cost sav-
ings for resilient planning over PRM is extremely substantial,
over 14 billion or 6.7% in CA costs. This is mostly due to
the avoided installation of several GW of thermal capacity.
The R4S3H scenario presents moderately lower savings, 6
billion or 3.3%. The savings come primarily from avoided
maintenance costs of economically-retired power plants and,
to an extent, avoided installation of thermal capacity. This
scenario has overall lower loads, so there are overall lower
installations necessary to meet reliability needs. As such, the
cost savings are considerably lower. In both scenarios, the
operating costs are slightly lower using resilient planning as
the value of renewable technologies for reliability is higher,
resulting in slightly higher overall capacity of these technolo-
gies.

The cumulative investments in 2045 are shown in Fig. 5
for both scenarios. We also visualize the fleet resulting from
planning with no reliability requirement (‘‘No Rel.’’) to help
compare the planning regimes. Both scenarios show generally
similar levels of renewable and storage buildout between the
PRM and resilient planning regimes. In the R8S5C scenario,
there is a slight increase in renewable and slight decrease in
storage build for resilient planning. In the R4S3H scenario,
the renewable buildout is nearly the same, but the storage
buildout is slightly higher. The key difference between the
three regimes is the level of retirement and construction of
thermal technology. Without any reliability, there are con-
siderable retirements. PRM encourages heavy buildout of
thermal units and nearly no retirements. Resilient planning
is a middle ground between the two results. The overall lower
reliance on thermal units in the two scenarios manifests in
different ways. The total thermal fleets in 2045 are shown
in Fig. 6, including both existing units, planned retirements,
economic retirements, and new construction. Not shown are
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FIGURE 5. Comparison of fleets resulting from planning with PRM, the
proposed resiliency days modeling, and no reliability requirement. The
proposed method is less dependent on thermal units for reliability.

combustion turbine and reciprocating engine capacities which
have negligible installed capacities in all scenarios. Planned
retirements are minor, consisting of 2 peakers in all scenarios.
Generally, combined-cycle gas turbines (CCGTs) are lever-
aged more heavily in 2045. In the PRM scenarios, CCGTs
are the main candidate for new construction. While two
smaller candidate units (steam turbine, reciprocating engine)
are available, there is nearly no construction of these re-
sources as the CCGT has a slightly lower $/MW capital cost.
These resources are almost exclusively used to satisfy the
reliability constraints, so their operating characteristics are
less important than their capital cost in this context. These
units are not visualized here due to that lack of utilization.
Peakers see more retirements in general; these resources are
particularly expensive to run, so pose little benefit to normal
operation. However, the maintenance costs are low compared
to capital costs of new construction, so peakers are retained
when they serve to satisfy reliability constraints. In the lower-
load R4S3H scenario, both CCGT and peakers see retirement.
We have demonstrated that the fleets produced by the resilient
planning regime are more economical than the PRM fleets. It
is critical to demonstrate that the fleet meets the required level
of reliability; otherwise, these cost savings are worthless. We
seek to demonstrate that our planning approach leads to more
economical, sufficiently-reliable fleets by more appropriately
accounting for the load-serving potential of all resources
during extreme load events. In order to demonstrate this, we
directly look at the loss of load expectation. Then, the level of
load above these events that could be actually served by each
fleet is examined.
For each of the investment years, 10 years of unit dispatch

are used, with 5 each corresponding to the cooler and hotter
warming scenarios, and look for any load shedding. Neither
planning regime experiences any load shedding in this test.
This should come as no surprise; dispatch of extreme load
periods was directly modeled in the resilient planning regime,
and the PRM regime has even higher capacities. This study
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FIGURE 6. Comparison of thermal fleet components under PRM and
resiliency days modeling.

thus satisfies the 1-in-10 loss of load expectation which in-
forms CAISO’s reliability margin.

Although this analysis is not shown, it is worth noting that
if only the 1-hour gross load peak is selected for resilient
planning, load shedding actually does occur in this dispatch
stage. This highlights the importance of looking at the cor-
relation between renewable generation and load rather than
load alone for reliability considerations, as well as selecting
net load peaks of several time scales as the resiliency periods.

It was shown that each fleet meets the reliability require-
ments; now we seek to demonstrate the degree to which each
fleet exceeds the reliability requirements. We conduct a study
showing the level of load above the peak load that could
be served by each fleet. First, the 1-in-10 load day for each
investment year is selected. As is, this represents a reliability
threshold. Then, the load of this day is increasingly scaled
and look to the number of hours with load shedding. The
results of this experiment are shown in Fig. 7. The resilient
planning regime typically starts requiring load shed after a
5% or 10% increase in the load. The PRM regime starts
shedding load at significantly higher percentages in every
case. It also experiences fewer hours of load shedding. In
the R8S5C scenario, the PRM regime can meet demand 25%
higher than the 1-in-10 load in 3 out of the 5 investment years.
This demonstrates that the PRM scenario is overbuilt.

The key result of this analysis is that the existing method,
rather than meet the prescribed reliability standard, far ex-
ceeds it. On the other hand, the proposed method more ac-
curately tailors the portfolio to meet the reliability standard,
at a lower overall cost. While higher levels of reliability
are not adverse, significantly exceeding reliability standards
by maintaining or building excess capacity is not the most
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FIGURE 7. Study showing the load shedding behavior of fleets resulting
from PRM and the proposed method as the peak load day is scaled higher.

efficient investment. In this sense, the proposed method is an
improvement, as it meets reliability targets at significantly
reduced costs. Finally, the proposed method is flexible, and
could readily be applied to meet more or less stringent reli-
ability targets by adjusting the specified probabilistic set of
days D.
As previously discussed, the PRM constraint is artificial in

the sense that it attempts to distill complex energy resource
dispatch information into a single constraint. In the theoreti-
cally most rigorous planning model, thousands of days would
be simulated. Periods of extreme weather, across a variety of
patterns, would be directly simulated, and thus the resiliency
requirements would be met. However, this type of analysis
is currently infeasible due to computational limitations. The
proposed method essentially occupies a subspace of that
theoretical planning model. PRM-based models, however,
transform into an entirely separate model by the addition of
this constraint, and so the decisions made are of unknown
optimality compared to real operations.

C. POLICY IMPLICATIONS
The key takeaway of this study is that PRM-based relia-
bility requirements are too inflexible. Feasibly, PRM-based
constraints could suffer from the opposite problem as well,
failing to account for severe energy droughts. This problem is
demonstrated by the fact that resilient planning using only the
peak load day produces a fleet that has to shed load on days
with lower gross load, but also less renewable generation.
In this case, the use of PRM results in chronic underesti-

mation of renewables’ contributions towards reliability. This
in turn creates an artificial demand for new power plants,
and a lack of retirement of existing power plants. The lack
of retirement has considerable social implications. The re-
siliency regime retires roughly 60 peakers more than the
PRM regime in both scenarios. Peakers are often located
in densely-inhabitated areas [27], so reducing the reliance
on these resources may have an even greater social impact
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than reducing system-wide carbon emissions. Retiring these
resources may have further social benefits if the land can be
converted to other uses, such as housing or greenspaces. If the
state moves forward under the assumption that no existing
power plants will be retired, these potential benefits will be
left untapped.

On the other hand, the construction of new power plants
is associated with considerable embodied carbon emissions.
Even if these resources never turn on, and thus never emit,
in the context of normal operation, there is a notable cost
associated with their construction. We follow two estimates
of the emissions associated with power plant construction to
obtain estimates of 450 and 1280 tons per MW [28], [29]. For
the R8S5C scenario, the PRM regime is associated with an
additional 3.2-9.2 million tons of emissions. Simultaneously,
the 2045 emissions target is approximately 12 million tons.
Although embodied emissions are not considered as part of
the energy sector emissions targets, the scale of emissions
associated with this capacity that is built but not required to
meet reliability needs is extremely relevant. Thus, it is crucial
that resources not be overbuilt, not just for cost reduction, but
for a holistic view of satisfying California’s climate goals.

Long-term planning models like the present model have
a separate objective from short-term planning models. The
goal of long-term planning models is not to determine exactly
how much capacity of each resource will be purchased for
the next 20 years. The goal is to determine long-term trends
in capacity. Especially from the perspective of state agencies,
understanding these trends is critical as they inform at a high
level the implementation of various programs. The use of
PRM can affect this in several ways. Thermal capacity be-
comesmore favorable and renewable capacity is undervalued,
leading to severely overbuilt fleets. The excess of thermal
capacity has both cost and social ramifications. PRM also
undervalues the reliability contributions of renewable and
storage capacity to the extend that it reduces the amount of
investment in these technologies.

It is necessary to note that reliability studies, in particular
in CAISO, encompass a large number of contingencies, some
of which are not suitable to be modeled here. We are not
advocating for the replacement of near-term resource ade-
quacy studies by the proposed resiliency period modeling.
However, we suggest that for the task of long-term planning,
the current planning reserve margin studies may be overly
rigid, and undervalue the combined value of storage, wind,
and solar. This is of interest to policymakers, because these
long-term planning models are not directly informing utilities
which resources they should buy, but informing state agencies
where regulatory and funding efforts should be directed over
the next decades.

We would also like to point out that the proposed resiliency
days method is ultimately a data driven method. The method
is effectively driven by the available projections and statistical
analysis of weather-generation-load patterns. More or less
frequent events could be chosen as the resiliency days, in line
with the desired loss-of-load expectation. The resiliency days

could also incorporate modeling for generator outages, line
outages, and other climate-related risks. The key advantage
of the proposed method is direct simulation of low-likelihood
events. The specific implementation is flexible.
Simultaneously, the resiliency days method is enabled

by the Lagrangian relaxation-based solution methodology,
which provides substantial improvements in CPU time over
traditional optimization solvers used alone. This technique al-
lows us to solve a detailed dispatch model without sacrificing
the temporal scope.
A caveat of these studies is that perfect foresight to which

climate pathway will occur is impossible. This highlights
the need for study of a range of pathways, as well as the
importance of repeating these studies every few years to
ensure that the trajectories take advantage of the best available
science. Conversely, the advantage of the proposed resiliency
days method is that it better represents the capacity needed
to ensure reliability. The excess capacity held in the PRM
scenarios, although unintentional, could be advantageous if
the future loads are greater than the projection. However, we
suggest that this type of uncertainty can be more robustly
handled through scenario analysis, rather than unintended
effects of PRM. Finally, we analyze a range of scenarios
concerning climate and emissions, but do not consider var-
ious other uncertainties, including the future price of storage
and renewable technologies, adoption of hydrogen fuels, in-
creased energy efficiency, and so on. These factors are all
relevant to a holistic understanding of future power system
operations and investment in California.

V. CONCLUSION
In this paper, we investigate the impacts of climate and socioe-
conomic scenario uncertainty on California’s decarbonization
pathways. First, we formulate decarbonization planning as
a MILP problem. We propose a novel method for ensuring
reliability, referred to as resiliency period planning. Then, we
discuss the surrogate Lagrangian relaxation-based technique
that enabled computational tractability of this large MILP
model. We present the results of planning under a range
of climate and socioeconomic scenarios and show that the
range of required new capacity of renewables and storage
varies on the order of 52GW.We then compare the traditional
approach to reliability to the proposed method and find that
the proposed method meets the required reliability threshold
at costs savings of 6.7% by more rigorously valuing the
contribution of renewable technologies. This study, however,
presents a limited version of the reliability studies performed
by regulators and utilities. Future work will expand upon
the reliability studies to further investigate the comparative
performance of the proposed method and planning reserve
margin-based approaches. It is also acknowledged that the
direct adoption of this proposed technique has significant
hurdles for the risk-adverse utility industry. Instead, we hope
that this study elucidates the shortcomings of the existing
methods.
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