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Abstract—Recently, the application of stochastic gradient de-
scent (SGD) with Polyak stepsizes has gained attention and
exhibited promising performance for machine learning problems.
However, when the interpolation condition (where each loss
attains a minimum at a globally optimal solution) is not satisfied,
SGD with Polyak stepsizes encounters a primary limitation that
impedes its overall effectiveness: a lack of knowledge of the
optimal loss. In this study, we introduce a non-diminishing accel-
erated stochastic Polyak stepsize (AccSPS) with level adjustment
coupled with approximate variance-reduced gradient (AVRG)
descent to overcome this limitation. Our approach incorporates
a decision-based level adjustment method to obtain an accurate
estimation of the optimal loss. To significantly reduce memory
requirements, we adopt a variance-reduced method that keeps a
snapshot of average gradients after specific iterations. Theoretical
analyses establish the convergence rate to the exact minimum
in the non-interpolated setting. Numerical studies demonstrate
the superior performance of AccSPS, showcasing a significantly
lower loss when compared to state-of-the-art algorithms like
DecSPS, AdaGrad, Adam, and AMSGrad, up to several orders
of magnitude.

Note to Practitioners—This paper addresses a common chal-
lenge in training machine learning models—namely, the difficulty
of tuning learning rates when the optimal loss value is unknown.
Traditional approaches, such as stochastic gradient descent
(SGD) with Polyak stepsizes, work well when every training
example achieves its minimum at a known optimal solution.
However, in many practical settings this condition does not hold,
limiting the effectiveness of these methods. The proposed solution
introduces an accelerated variant of SGD, named AccSPS, which
dynamically adjusts its stepsize without needing the exact optimal
loss value. It does this by using a decision-based level adjustment
method that estimates the optimal loss during training, coupled
with a technique that reduces the memory burden by averaging
gradients at strategic points. As a result, this approach not
only simplifies the tuning process but also improves the overall
performance of the training algorithm. Numerical experiments
show that AccSPS can achieve significantly lower loss values
compared to widely used algorithms like DecSPS, AdaGrad,
Adam, and AMSGrad. While the method has demonstrated
promising performance in theoretical and experimental studies,
future work will focus on further refining these techniques for
even broader applications in machine learning.

Index Terms—Stochastic Polyak stepsize, level adjustment,
variance-reduced gradient, non-interpolation.
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I. INTRODUCTION

In this paper, we consider solving machine learning prob-
lems, which can be formulated as follows:

1 n
min f(z) =~ ;fz(w) (D)
where f;(z) : R? — R are loss functions and z are the
parameters of the model. The goal is to minimize the average
loss f(x). The nature of the function f varies based on
the model under consideration, exhibiting characteristics of
strongly convex, convex, or non-convex. Such problems are
common in machine learning. The set of optimal solutions z*
is denoted as X* € R? and we assume that X* is a closed
non-empty set. The optimum value of f and f; are denoted
as f*:=inf, f(x) and f} := inf, f;(z), respectively.

A. Background and literature review

The success of a machine learning model depends on
the efficiency of optimization of (1), and the foundational
principles behind rest upon a series of solution updates. During
the course of several decades, there have been numerous stud-
ies that improve solution-updating directions (e.g., stochastic
gradients, incremental gradients) and stepsizes (also known as
learning rate, e.g., constant stepsizes, Polyak stepsizes) for fast
convergence, which will be discussed next.

Updating directions. Stochastic gradient descent (SGD), in-
troduced in [1], is widely used for machine learning problems
(1) where solutions are updated as x4 = x — 7,V fi(2%)
with directions V f;(z*) representing gradients for component
1. The high variance in gradient estimates can make SGD
inefficient for large datasets where more stable and accu-
rate gradient estimates are preferred. To address this issue,
stochastic variance-reduced gradient (SVRG) descent [2]-[4]
was developed to reduce variance by maintaining snapshots of
past average gradients.

Stepsizes. Ensuring the convergence of SGD and SVRG
hinges on a critical parameter—the stepsize 7. Adopting di-
minishing stepsizes, [1], [5]-[7] has been one of the traditional
strategies to guarantee convergence to the exact solution. This
stands in contrast to a constant stepsize, which only ensures
convergence to a neighborhood of the optimum. Besides, a
variety of adaptive stepsize methods, including Adam [8],
RMSprop [9], AdaGrad [10]-[12], and AMSGrad [13] have
gained widespread popularity and have been incorporated as
foundational optimizers in machine learning libraries.

Following the pioneering work by Polyak [14] originally

k *
% for deterministic

developed to set stepsizes as 7, =
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subgradient methods [15], [16], the ‘“stochastic” variants of
Polyak stepsizes have gained momentum in recent studies
for machine learning [17]-[24]. For a smooth problem (1),
subgradients g* at z* always exist and are equal to gradients
V f(2*). Compared to the deterministic Polyak stepsize, which
requires the assessment of the function value f(z*) and
its subgradient ¢*, the stochastic Polyak stepsize developed
in [19], [20], [22]-[24] simplifies this requirement by only
necessitating the evaluation of f;(z*) and V f;(z*). However,
the primary challenge with stochastic versions of the Polyak
stepsize arises in non-interpolated settings due to the lack of
information about the optimal loss f*, which will be discussed
next.

Previous work on estimations of f*. Various estimation
techniques have been employed since the Polyak stepsize relies
on the generally unknown value of f*. In [17], a variant of the
Polyak stepsize named the L4 algorithm is introduced, which
requires online estimation of f*. It substitutes f* with v fiin,
where fiin represents the minimum loss achieved up to that
iteration. The method, however, has no theoretical convergence
guarantees and exhibits no robust empirical performance.

A comparable approach is presented in [18] to estimate f*
where a scheduled SGD is run first to obtain a loss value
as the estimation of f*, which is subsequently maintained
without further adjustments. Furthermore, the theoretical proof
specifically concentrates on strongly convex smooth functions.
In [25], a moving-target Polyak step size is proposed, utilizing
n auxiliary variables to record the past loss values for each
data point. However, it requires careful hyperparameter tuning
and may face challenges when applied to problems with large
regularization.

When estimating f*, a notable distinction occurs under in-
terpolated versus non-interpolated settings. Under interpolated
setting, where at 2* the following relation holds f* = f* =0,
the estimation problem is much simplified [19]-[21]. [20]

*

presented a bounded stepsize 7, = min{%,m}
to guarantee convergence. However, the non-interpolated sce-
nario, often encountered in under-parameterized or regular-
ized problems (e.g., incorporating an [, regularization term
to (1)), presents a significant challenge since both f* and
f may exceed zero rendering estimations f a bit less
informative for estimating f*. Addressing this gap, [22] in-
troduced DecSPS, an ek;daptation that calculates the stepsize
as N, = émin {%,ck,mk,l} setting a diminish-
ing boundary to ensure convergence even when f* and f7
are unknown. This model leverages a constant lower bound
¥ < fr, typically zero, to approximate f;. This strategy, while
advancing towards resolving the convergence issues, due to its
diminishing upper bound for the stepsize, may limit the ability
to exploit the nature behind the Polyak stepsize fully.

Level adjustment for accurate estimations of f*. To get
accurate approximations of f*, the optimal function value f*
can be replaced with dynamically-adjusted level values fk.
There have been two level-adjustment research directions. The
“path-based” level adjustment approaches were developed in
[26]-[28] for subgradients methods [29], [30]. While these
methods have demonstrated convergence, their reliance on

hyperparameters and customizability for specific problem in-
stances remains problematic. In another direction, “decision-
based” level adjustment methods have been developed in [31],
[32]. The original key idea for decision-based level adjust-
ment is to detect the divergence of a sequence of solutions
{aFi kst . 2Fit™i} from the exact solution z* [31];
the result has then been strengthened to detect the violation
of the Polyak stepsize directly [32]. Within both “decision-
based” methods, level values are readjusted when a violation
is detected, and both approaches showed an advantage over
their “path-based” counterparts as demonstrated by [31], [32].

B. Main contributions

As previously mentioned, in the non-interpolated setting,
SGD with Polyak stepsize encounters a primary limitation:
the absence of f*, significantly impeding convergence to
the true optimum. In this paper, we propose an approximate
variance-reduced gradient descent method by synergistically
combining the Polyak stepsize and the decision-guided level
adjustment approach [32] to address this limitation in the non-
interpolation setting: Namely, the dynamically adjusted level
values converge to the true f*, leading to the solution converg-
ing to the exact solution with approximate variance-reduced
gradients. To the best of our knowledge, we are the first to
develop the Polyak stepsizing rule with a decision-based level
adjustment approach to address problems arising in the field of
machine learning. Furthermore, this level-adjusted Polyak rule
can be embedded within the surrogate Lagrangian relaxation
(SLR) framework to tackle large-scale mixed-integer programs
(MIPs) [33]-[36].

Specifically, our work makes the following contributions:

e In Section II, to significantly reduce memory require-
ments, we extend the approximate gradient method and the
level adjustment approach proposed in [32] to the stochastic
variance-reduced minibatch setting. Then we propose a novel
non-diminishing stepsize termed accelerated stochastic Polyak
stepsize (AccSPS) and introduce the detailed algorithm to up-
date solutions. The non-diminishing nature of AccSPS comes
from adapting to approximate variance-reduced gradients as
well as from gauging distances from function value to the
series of level values converging to the true f* from above.

e In Section III, we theoretically derive the convergence
rates for AccSPS employing the approximate variance-reduced
gradient descent, both with and without the knowledge of f*.

e In Section IV, we showcase an illustrative example
highlighting the dynamics of AccSPS and emphasizing the
significance of f*. We illustrate that, with knowledge of f*,
SPS can achieve convergence to the exact solution, even in the
presence of correlation between 7, and V f;(z*) mentioned
in [22]. Moreover, the dynamically adjusted estimation of f*
ensures AccSPS exhibits a faster convergence to the exact
minimum compared to DecSPS, particularly when lacking
knowledge of f*.

e In Section V, we validate our theoretical findings through
numerical studies. By testing on various datasets, we demon-
strate the effectiveness and superior performance of AccSPS
compared to state-of-the-art algorithms in terms of achieving
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a lower loss for a variety of convex machine learning prob-
lems. Additionally, we extend our experiments to non-convex
datasets demonstrating the advantage over existing methods
for Matrix Factorization and image classification problems.

II. ACCELERATED STOCHASTIC POLYAK STEPSIZE WITH
LEVEL VALUE ADJUSTMENT

In this section, the approximate function value and approx-
imate variance-reduced gradient in the stochastic minibatch
setting are presented first. The Polyak stepsize and the accel-
erated level adjustment approach are then presented, followed
by the procedure of the entire algorithm.

A. Approximate variance-reduced gradient descent

To reduce computational requirements, we partition the
entire dataset into predetermined batches S and randomly
select one batch B; € §,i = 1,..., m during each iteration.
Here m is the number of batches, and b; is the number of
components in batch B;. With this setting, we define the
approximate variance-reduced gradient as follows.

Definition II.1. Consider that we keep a snapshot of average
gradient i = 13" b,V (&) and an average function
value 7 = L3 b fg,(Z) after every s iterations, with
# = 2%, Assume a batch gradient V [s, 1s calculated
at iteration k, we define the approximate variance-reduced
gradient as:

X b; b;
g = LV 3, (z*) — LV [, (&) + fu. 2
n n

The approximate variance-reduced gradient satisfies the
following inequality,

f* = Fp,(z*) > (% — a*,§"), 3)

where Fi, (z*) is the approximate function value at iteration
k:

Fiy(2*) = 2 fis, (2*) — 2 fis, (8) 45— (2=, = 22V fs, (8)).

" “)

The solution is updated by taking a series of steps 7, along
the approximate variance-reduced gradient directions §* as:

(&)

The approach to calculating the stepsize 7, will be presented
in the next subsection. The proof of the property (3) of the
approximate variance-reduced gradient can be found in Section
A-A of the Appendix.

k+1 _ .k ~k
X =T —MNkg .

B. Accelerated stochastic Polyak stepsize with approximate
variance-reduced gradients

Building upon the deterministic Polyak stepsizes as detailed
in [32], we extend the method to a stochastic Polyak stepsize
context:

Fp i ('T k) - f k
IEalls
where fk, is the level value used to estimate f*, v and 7 are
the scaling constants. The value of  controls the value of step

AccSPS : np =17 ,0<y<y <2, (6)

size. For problems where the gradients exhibit large variance,
a smaller A\ helps ensure more stable updates. In contrast, for
problems with smaller gradient variance, a larger A can be used
to accelerate convergence. To avoid numerical issues resulting
from potential division by a small number, an upper bound U
is used for AccSPS. The level value estimation procedure will
be introduced in the next subsection.

In contrast to the deterministic Polyak stepsize [15], AccSPS
eliminates the need for evaluating function values f(z*) as
well as subgradients g*. Moreover, AccSPS operates without
requiring knowledge of f*. As compared to the stochastic
Polyak stepsize presented in [20], [22], AccSPS only requires
additional previously obtained average function values © and
average gradient fi, which are periodically updated and stored
without incurring significant memory requirements.

C. Decision-guided level adjustment

To operationalize the level adjustment for stochastic Polyak
stepsizes, the following result (due [32]) is used:

Theorem I1.2. Consider the sequence of solutions generated
iteratively according to (5) is {x%i xFitl . pkitmi—1}
with the corresponding approximate variance-reduced gradi-
ents as {gFs, grit, ... gFTmi—1Y The associated step sizes
{0 s M 415+ Mie;+m;—1} are computed using level values
{frjs foje1s oy Jry4my—1} via (6). If the following Polyak
Stepsize Violation detection (PSVD) problem:

ks 1 ks
(x— ki ghiy < *§ﬁkj||gkj I
) ks 1 ks
(x — Jzk]+1,gk’+l> < —%nkj+1”9k7+1”27
. 1 ks _ 1 ks o
<x_xkj+mj 1,gkj+mj 1>§—§77kj+mj71”gk3+my 1”27

@)
with x € R? being continuous decision variables admits no
feasible solution, then the level value can be updated as:

~ v o Y .
s == Tkt — 1—= Fg. (z7).
fkj +m; ,_—yfkj“l’mj 1 +( '_Y)KE[]?J flglilm/j_l] B; (‘T )

(®)

Moreover, fkj < fk,-+mj < f

There should be a reasonable gap between ~ and 7, which
ensures that when the PSVD problem is infeasible, the level
value can be sufficiently updated. The sensitivity to parameter
7 is studied in Appendix B-A. In our numerical experiments,
we set ¥ = 1.57.

Theorem II.2 helps detect the violation of the Polyak
stepsizes, as proved in [32], each time a system of linear
inequalities (7) is violated, a tighter level value fk].erj
is calculated. We adopt the dual simplex algorithm in the
commercial solver Gurobi to check its feasibility. Machine
learning applications frequently utilize a large number of
parameters. As a result, (7) may contain a large number of
decision variables and a significant number of constraints. To
detect violation of (7), the number of variables considered
is reduced to n,, and feasibility checks of (7) are performed
every M iterations; sensitivity with respect to both parameters
is empirically validated in Section B-A of the Appendix
demonstrating significant reduction of the CPU time without
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significant slow-down of level adjustments or convergence
speed. A promising avenue for future research is to exploit
the incremental introduction of constraints across iterations by
employing the PSVD solution from one iteration as a warm
start for the next.

D. AccSPS algorithm with level adjustment

A complete procedure of AccSPS for solving (1) is outlined
in Algorithm 1. The level value fo are initialized to O,
the approximate function value is initialized as Fp,(2°) =
LS bifs,(2°), and the approximate variance-reduced gra-
dient is initialized as g° = >, b;Vfp, (). At each
iteration, g* and Fp, (") are updated according to (2) and
(4). Then the PSVD problem is solved every M predetermined
number of iterations. When the PSVD problem is infeasible,
the level value fj is adjusted following (8). Finally, the
stepsize 7, and the solution xj; are updated according to

(5)-(6).

Algorithm 1 (Loopless) AccSPS
0

1: Input: initial solution x

2: Initialize fo = 0, & = 2° L= LY bV (), U =
+ Z'L 1 b fB ( )

3: fork*OtoKdo

if (k4 1) mod s =0 then
Update # = zF 1, i =
5 i bif, ().

. end if

7. Update §*, Fp, (x

AN

& iy biV s (2), 7 =

) using (2) and (4)

M min{’y%, U}
9: if £k mod M = 0 then
10: Solve PSVD problem (7)
11: if (7) is not feasible then
12: Update level value fk using (8)
13: end if
14:  end if
15:  aF 2k — gt
16: end for

III. CONVERGENCE ANALYSIS

This section presents major theoretical convergence re-
sults. Specifically, we provide convergence results for AccSPS
within the approximate variance-reduced gradient framework,
namely, convergence results are derived for Polyak stepsizes
both with known f* and unknown f*.

In the following convergence proofs, it is assumed that
f* = f(«*) and the approximate variance-reduced gradient
is bounded from above:

Assumption IIL.1. (Approximate variance-reduced gradient
boundness). For any k, there exists a scalar (G, such that

1" < G. 9)

Assumption III.1 is a common assumption in the analysis
of stochastic Polyak stepsize methods. For example, both
[20] and [21] make similar bounded gradient assumptions to

establish convergence results in the context of non-smooth
optimization problems. In practice, real-world problems may
involve unbounded or highly variable gradients. To address
this, one can employ gradient clipping or stepsize clipping
strategies to effectively enforce boundedness during training.

In the following, the convergence rate with the Polyak
stepsize is shown. The cases where f* is known are considered
first, followed by the cases where f* is unknown. As in
[32], to guarantee convergence, we assume that the following
condition is satisfied.

Condition IIL2. (Convergence condition). For any k, there
exists €, > 0 such that if Fp, (2*) < f(2*), then f; + &), <
FBj (Z‘k)

In the above, {;}7°, can be any sequence that satisfies
> pei €k = 00. According to the definition in (4), Fj, (z*)
is always less than or equal to f(z*), a result that follows
directly from the properties of convexity.

The convergence condition above is easy to satisfy. At
each iteration, we can easily check whether the gap between
Fp, (z*) and f* is greater than a pre-set value ;. In our
experiments, we choose €, as a small constant. If not (which
will not happen in our experlments) we move to the next mini-
batch and recalculate Fg, (v k). In the worst case, fk; +ep <
Fp,(z*) is not satisfied after solving all the mini-batch, then

Fp, (%) = f(a*).

Theorem IIL.3. Suppose that solution x* is updated by
the approximate variance-reduced gradient with the stepsize
calculated as (6). If fr = f*, then Vk

k

min {}FB #on—x*H )
k€{0,1,....k \/m\/w 2
(10)
L |
For k > @)
min if(m”)—f*}<#“xo—x*u - (1D
k€{0,1,....k T VE+1y/27—~2 2

The proof is presented in Section A-C of the Appendix. In
the above theorem, it is shown that with the Polyak stepsize
and the optimal value f*, the best function value obtained
converges to the optimal value with a rate of O(1/v/k).

Next, we consider the situation where the level value is an
underestimate of f* and is dynamically adjusted. It has been
shown in Theorem 3 of [32] that the level value converges
to the optimal function value limy_, o fk = f*. To derive the
convergence rates, we first define a gap (approaching zero due
to Thereom 4 of [32]) between the level value and the optimal
function.

Theorem IIL.4. Suppose that at iteration k;, a new level value
fk is generated. Denote jiy,; = f* fk > 0. If the solution is
updated based on the approximate variance-reduced gradient
and the stepsize is calculated per (6) before the next level
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update at kj;1, then
min Fp. (") — f*
k€{kj kj+1,....k} B]( ) f
l=*s — 25

" (2= ) gz min(ug, , ex) K

YU(f* = fx,)

(2 =) @z min(puy;, sk()l’

where gz min(uy;,ex) >0 and K =k —kj + 1.

The proof is presented in Section A-D of the Appendix. The
first term of the right-hand side decreases as k increases. The
value of the second term depends on the distance between the
optimal function value and the level value. In the following
lemma and theorem, we can establish the convergence rate for
k — oo.

Lemma IIL.5. As k& — oo, the PSVD problem (7), there will
become infeasible infinitely often. Denote the sequence of the
iterations, when the level value is updated, as Y, i.e.,

T = (k). (13)

The difference between any two consecutive elements of Y is
finite, i.e.,

kg1 — ki < 00,Vk > 1. (14)

The above Lemma has been shown in Lemma 4 of [32].
From the above lemma, we can always select a subsequence
U oof T that lim; 00 Y[;41) — ¥p;) = 0o, where W(;; denote
the i*"element of W.

Theorem IIL.6. If the L-smooth condition of f holds and ¥
is any subsequence of Y, the following inequality holds,
: F ) KR _ *
ne{l(k),rlr(lli?+1,.‘.,k} B; O
') — o]l

T (2= ) ymin(g, 57 )K(K)

YU(f* = firy)

(2 —y)ymin(Zs, 57)’
G 2L(15)

where 1(k) is the largest of the values in U that is less than
or equal to k and K(k) =k — I(k).

The proof is presented in Section A-E of the Appendix.
As can be seen from (15), as k — oo, the first term of the
right-hand side converges to zero with a rate of O(1/K(k)).
The second term also converges to zero since the level value
converges to the optimal function value.

In the stochastic optimization literature, it iS common to
assume that either f(x) or each component function f;(z) is
L-smooth, particularly in methods such as SGD and SVRG.
While this assumption is commonly used to establish con-
vergence rates in expectation, our analysis adopts a worst-
case perspective: at each iteration, the convergence guarantee
holds independently of the specific mini-batch, provided that
Condition IIL.2 is satisfied. This underscores a fundamental
distinction in how our method leverages the L-smoothness
assumption compared to existing approaches.

IV. DYNAMICS IN ACCSPS: ILLUSTRATIVE EXAMPLE

In this section, we study the dynamics of AccSPS in a small-
scale non-interpolated regime to provide visualization. Here
we consider a two-dimensional regularized problem as f =

IS (A —a2)THi(x — x})) + 3|z|[%, where H; is a
random symmetric positive definite (SPD) matrix generated
using the standard Gaussian matrix A; € R¥3% as H; =
A; AT /(3d) and \ = 2. The number of iterations is set to 300
for all methods and the data points n = 2.

As discussed in [22], when utilizing SPS [20], even with
knowledge of f7, the convergence of f(z*) is biased due to the
correlation between my, and V f;(x*) in the non-interpolated
setting. Nevertheless, we briefly demonstrate that by incorpo-
rating knowledge of f* and making certain modifications, SPS
can converge to the exact solution. Specifically, we enforce
a diminishing lower bound to maintain the positivity of the
stepsize and substitute f with f*. In this scenario, the stepsize
is defined as 7, = max {é7min {M%mb}
I (’)(\/E) To distinguish from the original SPS [20], we
call this modified SPS as mSPS.

}, where

With £~ Without *
* X * X
4 X 4 X
x" i x" X
® Initial points ® Initial points
m3PS sPsiVk+1
2 DecSPS \ 2 DecSPS
HacSPs, \ AccSPS
N \ N x
N N
0 N\ 0 )
N, %
_K .3
-2« ; -2 e
#
/
—aNN\ —aP\

4 2 0 2 a 4 2 0 2 a

Fig. 1. Dynamic of AccSPS compared to mSPS (SPS) and DecSPS. In the
case of SPS, we incorporate a diminishing multiplicative constant to anticipate
a behavior similar to SGD. We visualize the contour lines of the respective
landscapes, including the average landscape. The initial solutions are denoted
by grey dots, while the final solutions for various methods are represented by
dots in the same color.

In the following analysis, we first adopt conditions outlined
by [22] to solve the two-dimensional regularized problem,
specifically, employing a batch size of 1 and possessing the
knowledge of f*. In this configuration, we substitute the level
value in (6) with f*. As shown in the left subfigure of Figure
1, with the knowledge of f*, all three methods can converge
to the exact solution.

In the right subfigure of Figure 1, we illustrate that, with a
dynamically adjusted level value fk, AccSPS can converge
to the exact solution even without knowledge of f*, as
demonstrated by the proof in Theorem III.6. In contrast, SPS
converges to a biased solution, and DecSPS converges to a
very small neighborhood surrounding the exact solution due
to a lack of knowledge of f*.

V. NUMERICAL STUDIES

In this section, we evaluate the performance of AccSPS
on convex and non-convex problems in the non-interpolated
setting. For convex problems, we choose binary classification
tasks, with regularized logistic loss f(z) = = > log(1 +
exp(—y; - al'z)) + 3|/z||?, where a; € R? represents the
feature vector, and y; € {—1,1} is the target label for data
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point 7. For non-convex problems, we address the regression
problem for deep matrix factorization, as outlined in [20]:
Inin{/{/l,v[/2 ]EgcrvN(O,I)HWQWl-T - Al‘||2, where Wl,Wg are
weight matrices and A is a badly conditioned matrix. Ad-
ditionally, we address image classification using deep neural
networks. Here we use Gurobi 10.0.1 [37] to solve PSVD
problems. All experiments were conducted on a desktop with
an 8-core Intel Core 17-9800X CPU, except for image classifi-
cation tasks, which were performed on a server equipped with
a 32-core AMD Ryzen Threadripper 3970X 3.7GHz CPU and
four NVIDIA GeForce RTX 2080 Ti GPUs with 10 Gigabit
memories.

For the binary classification problem, we use two real-world
datasets: A1A and Breast Cancer from [38] to evaluate the per-
formance of AccSPS, with different regularization levels and
batch sizes greater than 1 (A1A: batch size 128, A = 0.001,
Breast Cancer: batch size 32, A = 0.005). Sensitivities of
AccSPS to parameters v, 7, n,, and M are shown in Section
B-A of the Appendix. For the updating frequency of the
average gradient, we choose s = m/2. For the pre-set value
£k, we choose g, = le 2.

Regularized A1A - A\ = 0.001

The “plateau” regions for the stepsizes occur because, for
the Breast Cancer dataset, the approximate variance-reduced
gradients quickly approach zero. This results in a significant
increase in stepsize, which is then upper bounded by U.
Comparison with other optimizers. We demonstrate the
effectiveness of AccSPS by comparing it with other widely
used optimizers. Following [22], the comparison is performed
with respect to SGD, AdaGrad [11], Adam [8], and AMSGrad
[13]. For these optimizers, we use a linear-decay schedule for
the step sizes. The selection of different regularization levels
for the A1A dataset is outlined in Table I. Parameters for
the non-AccSPS optimizers are fine-tuned to achieve optimal
performance.

To illustrate the convergence dynamics, we present the rela-
tive loss at different wall-clock times in Table I. While during
initial iterations, certain non-AccSPS optimizers may attain a
lower relative loss than AccSPS, as the iterations progress, the
relative loss obtained by AccSPS becomes markedly smaller
outperforming other methods by several orders of magnitude.
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EVALUATION OF OPTIMIZERS ON DIFFERENT DATASETS
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Fig. 2. Performance of AccSPS compared to DecSPS. Experiments are
repeated 5 times and mean values and standard deviations are plotted.

Comparison with DecSPS. Now we evaluate the performance
of AccSPS against DecSPS, with insights presented in Figure
2. For a fair comparison, we report the relative loss of
both methods over wall-clock time rather than iterations. For
DecSPS, [22] suggests using a large upper bound for the
stepsize under light regularization. The left subfigures dis-
tinctly illustrate AccSPS’s superior performance over DecSPS.
Meanwhile, the right subfigures emphasize the noteworthy
characteristic of AccSPS—a dynamically adjusting stepsize
that responds adaptively to both loss and gradient dynamics.

Ontimi A =0.001 A =0.01
ptimizer

t=1.5s t =3.0s t=1.5s t = 3.0s
SGD 3.51e 4 2.04e— 4 2.79¢—4 2.52e°
AdaGrad 5.76e% 3.16e—4 1.70e—* 4.79e~°
Adam 2.91e—3 6.99¢ 4 1.43e~3 2.58¢ 4
AMSGrad  1.41e—3 5.44e—4 1.12e73 3.05¢4
DecSPS 7.73e—4 3.25¢ 4 2.50e4 7.91e—5
AccSPS  5.71e" 573612

Regularized Breast Cancer Dataset

Optimizer A = 0.005 A=0.05

t =0.5s t=1.0s t =0.5s t =0.8s
SGD 9.84e¢6 3.44e6 1.67e~° 2.79¢—6
AdaGrad 3.33¢~5 2.43e=5 1.93e~° 3.78¢—6
Adam 9.47e=5 9.42¢—6 2.49¢5 2.26e~°
AMSGrad  6.19¢° 7.94e=6 2.93e—5 8.03e—6
DecSPS 8.60e—5 5.20e—5 1.35e¢~ 5 1.04e=5
AccSPS 5.520713 2.25¢ "

Non-convex deep matrix factorization. Following the experi-
mental setup detailed in [17], [39], we select A € R20%12 with
a condition number x(A) = 100 and generate a consistent
dataset consisting of 5,000 samples. We vary the rank & of the
matrix W, € R¥*12 and W, € R2°%* to regulate the inter-
polation degree of the problem. For k£ < 20, the interpolation
condition is not satisfied, and f* > 0. As illustrated in Figure
3, AccSPS demonstrates superior performance compared to
DecSPS. AccSPS requires a smaller scaling constant 7y to
achieve fast convergence. For all the cases considered with
k = 6, AccSPS achieves the fastest decrease in loss thus
outperforming DecSPS.

Non-convex image classification using deep neural net-
works. Here, we address non-convex multi-class image clas-
sification problems using deep neural networks. Our exper-
iments are conducted on the CIFAR-10 dataset, utilizing
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Fig. 3. Performance of AccSPS compared to DecSPS on matrix factorization
datasets. Experiments are repeated 5 times and mean values and standard
deviations (std) are plotted. Different scale factors are applied to std for better
visualization.

the standard ResNet-18 architecture [40]. We use the cross-
entropy loss as the loss function and add I, regularization
to the objective function (1). We split the CIFAR-10 dataset
into 50,000 training samples and 10,000 test samples with
a batch size of 128. In addition to DecSPS, we include
SPS [20], SVRG [2], AdaSVRG [41], SGD, and Adam as
benchmark methods. For the optimizers with non-adaptive
stepsize formulas (SVRG, AdaSVRG, SGD, and Adam), we
employ a linear-decay schedule for the stepsize. For a fair
comparison, we set v and the upper bound 7, of AccSPS
and SPS to the same values. To save computation time for
AccSPS, SVRG, and AdaSVRG, we use a larger batch size
when updating the average gradient /i and set s = m.

As shown in Figure 4, AccSPS achieves the fastest con-
vergence rate among all optimizers. Compared to DecSPS,
our proposed AccSPS achieves lower training loss and higher
test accuracy, demonstrating its superior ability to handle non-
convex deep learning problems. Compared to SPS, AccSPS
maintains much smaller step sizes when the regularization
level is high. This is due to AccSPS’s ability to dynamically
adjust the level value, leading to more efficient optimization.
Compared to SVRG, AdaSVRG, SGD, and Adam, AccSPS
achieves a much faster reduction in training loss.

VI. CONCLUSION

To reduce computational and memory requirements when
training machine learning models, we introduced an approxi-
mate variance-reduced gradient method that employs an ap-
proximate steepest gradient descent direction. By applying
incremental averaging, this approach effectively reduces the
variance of stochastic updates, resulting in more stable conver-
gence under noisy conditions. To achieve fast convergence, we
employed Polyak stepsize with dynamically adjusted level val-
ues fk to iteratively estimate the optimal value f* for the entire
problem using the decision-guided level adjustment approach.
Leveraging the approximate variance-reduced gradient and the
level value selection scheme, we then provide a theoretical
analysis of an accelerated variant of the resulting stochastic
Polyak stepsize (AccSPS). This approach demonstrates con-
vergence to the exact solution without relying on the interpo-

lation assumption in convex stochastic problems. Numerical
studies indicate that our proposed AccSPS outperforms several
benchmark algorithms such as DecSPS, AdaGrad, Adam,
AMSGrad, and SVRG. Key potential directions of future
research involve establishing proofs in non-convex settings and
expanding experimental applications to larger deep-learning
models and datasets.

APPENDIX A
PROOFS OF MAIN THEOREMS

Within this section, we provide the proofs for the primary
theorems outlined in the main document.

A. Proof of property (3) in Definition II.1

Proof. Multiplying the approximate variance-reduced gradient
§* by x* — ¥ leads to equation (16):

Since we assume the dataset is partitioned into m prede-
termined batches, it holds that = > b; fz, (z*) = f(z*),
assume f(z*) = f*, then:

(@ —a",§") < f* — Fp, (2¥) (17

and thus completes the proof.
O

B. Proof of Theorem II.2

Before the proof of Theorem I1.2, we first prove the follow-
ing two lemmas.

Lemma A.l. Suppose that at iteration k, x* represents

the solution, G denotes the approximate variance-reduced
gradient at =¥, and ny, is the step size. Given x* € X*, if
Nk fails to satisfy the following inequality:

* ~ 1 ~
(" — b gh) < —gnkngk\l? (18)
then: P ( k) I
B, (z%) —
Me >4 — g (19)
5P
. _ Fp(a*)-f*
Proof. Assume that (18) is violated but n; < 7 - W.
From the latter, the following inequality holds:
1 -
—5mllg*l = f* = P, (") (20)

According to (3), the above inequality can be further written
as:

1 ~ * * ~
—SmlldIF = = Fy (o) 2 @t et ) @D
this means that (18) is satisfied, so we complete the proof by
contradiction.

O

Lemma A.2. Suppose that at iteration k, x* is the solution,
and G* represents the approximate variance-reduced gradient
at z*. The step size ny is computed using a level value fk
where fk < f* according to (6). If the inequality (18) is not
fulfilled, then a scalar f’ is defined as:

= %fk +(1- %)FBJ (") (22)
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Fig. 4. performance comparison of various optimizers on CIFAR-10 dataset using ResNet-18 under different regularization levels. Experiments are repeated
5 times and mean values and standard deviations are plotted. The number of training epochs is 100 for all optimizers, and the plots are truncated to maintain
consistency within the time frame. Here the testing accuracy is top-1 accuracy.

(x* — 2% %) = (a* — ¥, %Vfgj (z) — %Vft?j (Z) + )

= <;zj* — :I:k7 %Vfgj (.Tk) + % Z bzva@ (:E)>

IA
\
=
P
8
N
|
\
5
—
S

< L, (a") = =L [, (2%) + E;}E: bi (fs,(z") —
i,i#]
= g, )+ 1 > b

i,i#]

,i7#]

(@) + (2 — xk,% Z biV [, (T))

1,177

M4 (a* —F+7— :ck% > bV is,(3))

i,i7]

943 bt~ 8 Vi (@) 4 (-t Y b, (8)
JFE]

(16)

is a tighter estimation of f* such that:

fro<f <f*

Then we prove f' < f*. Building upon Lemma A.1, as in-
(23) equality (18) remains unsatisfied, (19) holds true. Substituting
N in (19) with (6), we obtain:

Proof. We start by proving fk < f’ . According to condition

III.2, we have that

fu=1
=

wa@—%)fk < %fml— %)ngm’“) = /' 4)

). Fp,(z%) — fi 5. Fp, (z%) — f*
[|g* |2 19"

(25)
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Upon canceling ||§¥||? and reorganizing the remaining terms,
the aforementioned inequality can be expressed equivalently
as:

(26)

f= %fk (1 %)FB,. (@*) < f*

thus we complete the proof. O

Now we can prove Theorem II.2 as:

Proof. Given that (7) has no feasible solution, it implies the
existence of z* € A'* that is infeasible for (7). Consequently,

we can deduce that there exists x € [kj, k; + m; — 1] such
that the following inequality holds:
~K 1 ~K
(a* —2".§%) > —Zmall3" |1 27
Based on Lemma A.2, we have:
=ity 1+ (L= 2)Fp (%) < (28)
thus it holds that:
A.m.: mi—1+(1—= min Fg (z") < f*
fk]Jr 7 7fk +mi—1 ( ’}/)me[kj,k +mj—1] B]( ) f
(29)

and according to Lemma A.2, fk]. +my > fkﬁmj_ 1 is a tighter
estimation of f*.
O

C. Proof of Theorem III.3

Theorem IIL3. Suppose that 2* is updated by the approx-
imate variance-reduced gradient with the stepsize calculated
as in (6). If fr = f*, then for all %, the following inequality
holds

G
min Fy. (z") — f*< 20 — z*
k€{0,1,....k} BJ( ) ! VE+1 /27 — 2 H H2
(30)
2 xr —x
For k£ > H the following holds:
G
min ") — fr < 20 — *
k€{0,1,....k ( ) = \/m /27_,}/2 || ||2
(€1))

Proof. From the update formula and the property of the ap-

proximate variance-reduced gradient (3), the following equal-

ity holds:
251 = a|[; = [[* = meg* - 2*];

= [l — 2|5 - 2m (3", 2* — &%) + 2 |13

< [la* = a5 = 2m (F, (=) = £ (@) + Ha’“uim

By recursively applying this inequality, we obtain:

k
2 < [l =2 = 3 20 (F, (@) ~ £(a*)

~k=0

k
~ 2
+ > 21l
k=0

ka-‘rl _

(33)

Considering that f* = f(z*) and using the stepsize (6), we
have

2" =25 < [la° = 273
b (Fg (zF) — f*)2 (34
+(72_2'7)'Z(B](I~)2f)
k=0 ||9F"H2
Since Hx’““ - x*||; > 0, we can further rewrite the inequality
as:
d |20 = a5
(Fp.(z") — )P <G? ——n~2. (35)
2P, &=

Thus, we obtain

min
ke{0,1,....k}

Fp, («") = f*

. 0 _ *H
H“T P

G
<
T VE+1y/2y — 42 G6)

As k — oo, the right-hand side term approaches zero. Since
the convergence condition III.2 is satisfied, for any x, either

[*4en < Fp,(2") < f(2") or Fip,(z") = f(z") is satisfied.
2 x x
Therefore, for k > M we must have
ex (2v=7?)
G 0
min  f(2") = f* < ||2® - z*
ref{0,1,....k} (") Vk 4+ 14/2y —~2 H H2
(37
The above inequality indicates that the number of iterations
G015
required to guarantee a suboptimality of J is W' O
D. Proof of Theorem II1.4
Theorem IIL.4. Suppose that at iteration k;, a new level
value fk is generated, and let yp;, = f* — fk > 0. If the

solution is updated using the approximate Variance—reduced
gradient and the stepsize is calculated according to (6) before
the next level update at kj;1, then the following inequality
holds

min FB(I,K) _ f* ||ijj B x*H;
w€{kj,k;+1,....k} ! N (2(_ 7)6{() (38)
YUf* =[x,
e
2-)8

where 8 = Zz min(u,,er) > 0and K =k —k; + 1.

Proof. Since the convergence condition IIL.2 is satisfied, for
a level value fk and k > k;, either fk +ep < F,(x k) <
f(@F) or Fpg, (z%) = f(a") is satisfied. Therefore the stepsize
N satisfies

) — Ji,

FB (mk YEEK
M= s > (39)
l1g*112 G?
or . .
f(a®) = fx = fr b
=7 =5 27 "5 = A5 “0)
|g* 2 [1g*1 G?
Thus, we obtain the lower bound on the step size
M 2 g min(u,ex) = B, @1)
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Using the update formula, we have the following inequality:
Ja*+t =l < fla* — 2
= 2 (B (a*) = £(2*)) + 02 ||
Rearranging the terms, we obtain
2ni (Fp, (2%) — f(z%))
< [l =ty = ot = 2]y + 0k 13"
= ka - x*H; - HkaH - f*Hz + ynk(F'B; (@*) = f)
= [l = |l = 4+ =+ e, () = )
+ymk(f(2*) = fr)

(42)

(43)
Since f(a*) = f*, the following inequality holds
(2= e (P, (%) = 1) < [Jo* = [, = a4+ |
+ e (f* = fu)

(44)
By recursively applying this inequality, we obtain
@=7 > m(Fp ") - f)
ne{kj,.“,k}
<la® —afy = e =2t by DD me(f - )
re{ky,....k}
<o~y X mt -
Ke{kj,...,k}}
45
Applying the lower bound on the step size, we obtain
=K (i, Foa") - 1")
ki _ x 2 * . K
<|lab =2+ D (S o fpin fx) 46)
He{kj,...,k?}
< b —ati+r X U k)
He{k)j,..‘,k?}

where K = k — k;. Simplifying further, we obtain

P— x _ f
e e 3]

min Fp (z")—f* <
K€Lk ki +Leeook} 57 (2-7)BK (2-7)8
(47)
This completes the proof. O

E. Proof of Theorem III.6

Theorem III.6. Suppose the L-smooth condition of f holds
and let U be any subsequence of Y. Then, for each k, the
following inequality holds,

2
o~ [

i Fp (z")— f* <
ne{l(k),IlI(llgl+1,m,k} B; (@) - f <
YU (f* = fuwy)
(2= )ymin(gs, 57)
G?7 2L (48)
where [(k) is the largest of the values in W that is less than
or equal to k and K(k) =k — I(k).

9

(2 — )y min(g, 57 )K(k)

Proof. Since the convergence condition III.2 is satisfied, for
a level value fkj and kj1 > k > kj, either fkj +ep <
Fp,(z¥) < f(a*) or Fp,(x*) = f(a*) is satisfied. Therefore,
either the stepsize 7 satisfies

Fp,(2%) = firy _ e
Mk =7 —1T9 2 9 (49)
[1g*1] G?
or
f@®) = fi, fa@b) = o
e =" " ~ > = = -7 (50)
[|g* |2 [1g*112 2L
Hence, in all cases
. € 1
M Z'ymln(G—l;i):Q, (51)

Using the same reasoning as in Section A-D, we write

20, (Fg, (z%) — £*)
2 2 2
e e i Pl i (S 74 7
Dk — a5 = T = | + v (s, (%) = fi)

<l = 2l = 1™+ = [l (i, (%) = i)
= ||la* = a* |2 — || = 2|+ v (F, (%) — @)

+ym(f* = fuy)
(52)
Rearranging gives

(2 =) (Fa, (2%) = £7) < o = a*|[2 — " — 27|

+ e (f* = fige))-
(53)

Then, by applying the above inequality iteratively, we have

k

Z (2 =)0k (FB, (2") — f*) < Hxl(k) —z*

r=I(k)

2

2

k
+ Z Y (F* = fuwy)-
r=l(k)
(54
Using the lower bound and upper bound of the stepsize, it
follows that

2 —v)OK(k) - min ™) — f*
( A/) ( ) <ne{l(k),l(k)+1,...,k} J( ) f ) (55)
2 ~
< |29 = ||| + KU £t = i)
which is
ne{z(k),rl?ly)ﬂ+1,...,k} Bi ~ (2—)0K(k) (56)
n YU(f* = firy)
2-70
O
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APPENDIX B
ADDITIONAL EXPERIMENT RESULTS

A. Sensitivity of AccSPS to parameter v, 7, n,, and M

In this section, we examine the sensitivity to the scaling
constant v and %, the number of variables n,, as well as the
updating frequency M in solving the PSVD problem (7).

Sensitivity to . AccSPS involves a crucial hyperparameter,
the scaling constant . To assess its sensitivity, we conduct
experiments on the A1A dataset while maintaining 5 = 1.57.
As depicted in the left panel of Figure 5, the choice of
v = 0.2 yields the most rapid reduction in loss for the AT1A
dataset. Although the convergence analysis allows any v < 2,
we empirically found that smaller values (e.g., v = 0.2)
lead to faster and more stable convergence in practice. This
conservative choice helps reduce step size variance and avoids
instability due to inaccurate level estimates in early iterations.
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Fig. 5. Sensitivity of AccSPS to v on the AlA dataset (A = 0.001).

Experiments are repeated 5 times and mean values and standard deviations
are plotted.

Sensitivity to 4. To test the sensitivity to 7, the parameter
v is held constant at v = 0.2 empirically, and various values
of 7 are selected. The results are shown in Figure 6. Based
on empirical observations, it is evident that the performance
of AccSPS is not significantly affected by the choice of 7.
The rightest subfigure in Figure 6 illustrates the dynamic
behavior of the level value. Level values converge to f* for
all considered values of 7. We opt for 4 = 0.3, corresponding
to setting v = 1.5y with v = 0.2.

Sensitivity to n,. The number of continuous variables n,,
in the PSVD problem should align with the dimension of the
data points in the dataset. However, we have the flexibility to
reduce n, to save computation time.

As depicted in Figure 7, it is evident that the decreasing
rates of loss of AccSPS with varying n, remain consistently
close. Moreover, the level value fk converges to f* across
different values of n,. Reducing the value of n, accelerates
the convergence of the level value fk, resulting in faster
convergence to f* and a reduction in computation time for
solving the PSVD problem. In practical applications, we can
pick n, = 2 for rapid computation without impeding the
decreasing rate of loss.

Table II presents the computation time for solving the PSVD
problem and its percentage of the total computation time with
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Fig. 6. Sensitivity of AccSPS to 7 on the AlA dataset (A\ = 0.001).
Experiments are repeated 5 times and mean values and standard deviations
are plotted.
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Fig. 7. Sensitivity of AccSPS to n,. The AIA dataset has 119 dimensions for
each data point and the W8A dataset has 300 dimensions for each data point.
Experiments are repeated 5 times and mean values and standard deviations
(std) are plotted.

different n,,. Here we fix the updating frequency M = 20. We
can see that a smaller n,, results in a shorter total computation
time. Additionally, the percentage of time spent on PSVD
relative to the total time decreases with a smaller n,,.
Sensitivity to ). Intuitively, the ideal approach would in-
volve solving the PSVD problem at each iteration and updating
the level value if PSVD proves infeasible. Nevertheless, in
practical implementation, we can assess the feasibility of the
PSVD problem and update the level value every M iteration.
In Figure 9, the sensitivity of AccSPS to the updating fre-
quency M is illustrated. We pick n,, = 2 for all experiments.



JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

TABLE II
PSVD TIME UNDER DIFFERENT 1

Parameter Regularized A1A (A = 0.01) Regularized Mushrooms - \ = 0.1
PSVD time (s)  Total time (s)  Pct (%) 10078
£ S——
ny =2 0.16 0.72 228 LR 0.048 g
Ny =95 0.29 0.80 36.4 i 1073 \ A & 'd'
ny = 10 0.67 1.24 54.1 | b - o e
—~ X o
Ry = 50 4.03 4.49 90.0 g 10 e, | 50036 Al
Ny =d 8.40 9.05 92.8 = Ny E P
- _ Vi © 1 -
~ 107 A\ 0024 A7
Y AR [ [
I AR\ 3 I
~107Y '\ = i
¥>< ~A- AccSPS, y=0.05, y=0.08, M=5 1 0.012 =~ AECSPS, y=0.05, y=0.08, M=5
: i H = @ AccSPS, y=0.05, y=0.08, M=10"" . ~@- AccSPS, y=0.05, y=0.08, M=10
The updating frequency exhibits a small impact on both the — = 1s5] 3 w00 =000 m =0 B Acesps, y= 0,05, 7= 0,06, M=20
decrease in loss and the convergence of the level value. i I e =it
1mi 1 3 ] 0 200 400 600 800 1000 ' 0 200 400 600 800 1000
S{mllarly, Table III illustrates .the computation time for ¥ itorations (k) # iterations (k)
solving the PSVD problem and its percentage of the total Regularized IJCNN - ) — 0.1
computation time with different M. In contrast to n,, a egularized 1J AT
larger M results in a shorter total computation time, and the 10°1g
. . . . L * S
percentage of time spent on PSVD relative to the total time is _10-2] % A 0o e *
. . * 1 ]
— \_ A ¢
also redu?ed. .In praf:tlce, we can pl'clf M = QQ to redgce the S o] 82 \3\::\ 025
computation time without compromising solution quality. & W o
= 1076 e \N\Y o
= \ S 0.20
~ \\ f_5
~ _g >
{ 10 < 0.15
TABLE III [ 10710 2
PSVD TIME UNDER DIFFERENT M S| aceses, y=000.7 0.10
th ~@ ACCSPS, y=0.08, y=
- = B AccSPS, y=0.08 0.051 -m AccsPs, y=0.08,
Regularized Mushrooms (A = 0.1) 10714 o~ Accsps, y=0.05, o AccSPS, y=0.05,
Parameter 4~ ACCSPS, y=0.05, y=0.08, M=100 00 ﬁ# AccSPS, y=0.05, 3
PSVD time (s)  Total time (s)  Pct (%) 0 100 200 300 400 500 600 700 " "0 100200300 400 500 600 700
M—5 Loz 73 589 # iterations (k) # iterations (k)
M =10 0.50 1.19 419 , o ) )
M =20 0.26 1.09 24.4 Fig. 9. Sensitivity of AccSPS to M. Experiments are repeated 5 times and
M =50 0.16 0.90 18.0 mean values and standard deviations (std) are plotted.
M = 100 0.12 0.80 14.7
ResNet-34 - A=1e-3 ResNet-34 - A=1e-3 ResNet-34 - A=1e-3
80 10°
N1 70
1 ‘T"H g 10!
“ 10 *‘H_,_._’_’_ 560
k] © 9
g g 50 Z107
£ Zaof + 7
K4 ‘J 1073
10° 30 '
]
20 104
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
time/s time/s time/s
ResNet-34 - A=5e-4 ResNet-34 - A=5e-4 ResNet-34 - A=5e-4
10! ‘\ % 10° W
2 S ————o—0o—0o— 70
T g
P ‘560 101
5 =0 #102
= £
< 30
10° 20 1073
10

0 250 500 750 1000 1250 1500 1750 0 250 500 750 1000 1250 1500 1750 0 250 500 750 1000 1250 1500 1750
time/s time/s time/s
—&— ACCSPS  —e— DecSPS  —=— SPS SVRG  —+— SGD Adam

AdaSVRG |
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B. Performance comparison on CIFAR-100 dataset

In this subsection, we assess and compare the performance
of AccSPS and other optimizers on the CIFAR-100 dataset
[42] with [5 regularization, which has 50,000 training images
and 10,000 testing images. We use a batch size B = 256
and consider two regularization levels A\ = {le — 3,5e — 4}.
For AccSPS, SVRG, and AdaSVRG, we use a larger batch
size when updating the average gradient ;i and set updating
frequency s = m. For a fair comparison, we set y and 1,
to the same values for both AccSPS and SPS. As shown
in Figure 8, AccSPS outperforms DecSPS on non-convex
deep learning problems. Compared to SPS, AccSPS is less
sensitive to -y and 7, and maintains a lower step size due to its
dynamically adjusted level value. Additionally, we observe that
both DecSPS and SGD exhibit a slower decrease in training
loss when [, regularization is applied. Note that we only store
20 partial gradients (with M = 20 and n, = 5) and function
values in the CPU, resulting in negligible memory usage (less
than 1 KB).
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