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Abstract—Battery swapping stations (BSS) provide operational
flexibility that can help reduce the environmental impact of
electric vehicle (EV) charging. This paper presents a carbon-
aware strategy that minimizes BSS emissions by scheduling bat-
tery charging based on predicted grid carbon intensity (CI) and
EV swap demand. We employ online update with transformer
models for CI and demand forecasting and a rolling horizon
mixed integer linear programming (MILP) model for scheduling
optimization. Simulations using real-world data demonstrate that
the average carbon emission reductions compared to a baseline
immediate-charging approach ranges from 1.8% (for the 5-slot
cases) to 7.5% (for the 20-slot cases). These findings highlight
the potential of predictive, carbon-aware control strategies to
improve the sustainability of BSS.

Index Terms—Electric vehicle, Battery swapping station, Car-
bon emission, Carbon intensity, Online algorithm.

I. INTRODUCTION

Electric vehicles (EVs) have emerged as a crucial compo-
nent in global strategies for reducing greenhouse gas emissions
and combating climate change [1]. Driven by international
agreements and ambitious national or regional environmental
policies aiming for decarbonization, many jurisdictions world-
wide are mandating or incentivizing the transition to zero-
emission transportation and actively expanding the necessary
charging infrastructure to support this shift.

While EVs produce no tailpipe emissions, their overall
carbon footprint is significantly influenced by the electricity
used for charging, which depends on the power grid’s real-
time carbon intensity (CI) [2], [3]. EV charging emissions vary
widely based on the generation mix; charging with renewable
energy results in substantially lower emissions compared to
charging during periods dominated by fossil fuels. Even in re-
gions with increasingly renewable energy, optimizing charging
times to align with low-carbon periods remains essential for
maximizing the environmental benefits of electrification [4].

An innovative approach to charging EVs is using Battery
Swapping Stations (BSS) [5]. These stations allow for rapid
replacement of depleted batteries with fully charged ones,
typically in under five minutes, thereby addressing common
concerns about range anxiety and long charging times associ-
ated with conventional plug-in charging [6]. Unlike traditional
charging, which must often meet immediate demand when
a vehicle is present, battery swapping stations offer unique

operational flexibility because the batteries can be charged
independently of vehicle use.

This operational flexibility of BSS offers an important
opportunity to reduce its environmental impact. By strategi-
cally timing the charging of the station’s battery inventory
to coincide with periods when the grid has lower carbon
emissions, BSS can effectively store cleaner energy for later
use through battery swaps, even when grid emissions are high
during the actual swap event. Harnessing this potential through
carbon-aware scheduling is therefore a key pathway to further
lowering the life-cycle carbon footprint of EVs [7].

This paper proposes and evaluates such a carbon-aware
charging strategy specifically designed for EV BSS, aiming to
minimize emissions by leveraging fluctuations in grid CI. We
begin by reviewing existing studies in Section II. Section III
formally defines the optimization model as a Mixed Integer
Linear Programming (MILP) problem. The core methodology
is detailed in Section IV, encompassing the online update
framework used for predicting EV swap demand and grid
CI, and the rolling-horizon optimization technique. Section V
presents the experimental setup and evaluates the effectiveness
of the proposed strategy. Finally, Section VI concludes the
paper, summarizing key findings, and suggesting directions
for future research.

II. RELATED WORKS

Optimizing EV charging schedules has attracted significant
research interest, primarily focusing on minimizing charging
costs for users and mitigating adverse impacts on the power
grid. Common approaches include decentralized control meth-
ods for scalability [8], Model Predictive Control (MPC) for
incorporating forecasts [9], and various techniques addressing
demand or price uncertainty [10]. Data-driven methods, partic-
ularly Reinforcement Learning (RL), have also been employed
for real-time scheduling [11] adaptable to grid conditions
and user preferences [12]. While effective for cost and grid
management, these studies often do not directly prioritize the
minimization of carbon emissions associated with charging.

Recognizing that the environmental benefit of EVs is
tied to the source of electricity, a growing body of work
investigates strategies to reduce charging-related emissions.
Some studies evaluate smart charging using real-world data



to align charging with periods which have higher renewable
generation (and potentially lower emissions) [13]. More tar-
geted approaches specifically consider the time-varying CI of
the grid. For instance, researchers have proposed emissions-
responsive charging strategies based on life-cycle assessments
[14], incorporated marginal carbon emission factors alongside
pricing signals [15], and developed scheduling algorithms that
are explicitly aware of low CI periods [16], [17].

BSS offer a distinct operational model with enhanced flexi-
bility, as battery charging can be decoupled from the presence
of an EV [18]. Research specific to BSS has explored optimal
scheduling of charging and swapping operations [19], network
planning considering user satisfaction [20], and managing
stochastic demand [21]. Advanced scheduling techniques us-
ing machine learning, such as LSTM [22] and RL [23],
have been proposed to handle the dynamic nature of BSS
operations. However, much of the BSS optimization literature
focuses on economic viability or operational efficiency under
uncertainty, rather than explicitly using the station’s charging
flexibility to reduce its carbon footprint.

While carbon-aware strategies exist for plug-in EVs [14]–
[16], their application to optimize the charging schedules of
BSS remains underexplored. This paper addresses this critical
gap, presenting a novel approach specifically designed to
minimize the carbon footprint of BSS by leveraging real-
time CI predictions, thereby highlighting an important pathway
towards more sustainable EV infrastructure.

III. PROBLEM FORMULATION

This work aims to determine an optimal charging schedule
for swappable batteries in an EV BSS over a finite time
horizon T . Our goal is to leverage this flexibility to minimize
the total carbon emissions associated with the BSS operation,
which includes emissions from charging batteries within the
swapping slots, as well as the emissions resulting from plug-
in charging for unmet swap demands. To reflect drivers’
preference for fast, convenient service, we prioritize assigning
incoming EVs to battery swapping whenever possible, and
any EV swap demand arriving at time t that cannot be
immediately satisfied by a fully charged battery from the
BSS slots will be redirected to utilize on-site regular plug-in
charging. We further assume that a sufficient number of plug-
in chargers are available to accommodate any unmet swap
demand. The charging process for these plug-in chargers is
assumed to follow a greedy policy (i.e. immediate charging at
maximum power upon EV connection). The optimization for
the swappable batteries explicitly considers the time-varying
CI of the electricity grid (CIt) and the anticipated EV swap
demands (Dt) to make scheduling decisions. Fig. 1 illustrates
the operational setup in this study.

Other assumptions include that the target state for all
charging considered in the emissions calculation – both for
charging of swappable batteries within BSS and for plug-in
charging – is 100% State-of-Charge (SOC). Furthermore, it is
assumed that all batteries involved in the system, both within

Fig. 1. Overview of the Battery Swapping Station operation.

the BSS slots and on the arriving EVs, are homogeneous,
possessing the same maximum capacity denoted as emax.

A. Key Variables and Parameters

Our model features the following index sets. B =
{1, 2, ..., B}: the set of charging slots available in the BSS,
indexed by b, where B is the total number of slots. T =
{1, 2, ..., T}: the set of discrete time steps in the optimiza-
tion horizon, indexed by t, where T is the horizon length.
It = {1, 2, ..., Dt}: the set representing the individual EV
swap demands anticipated to arrive during time step t, indexed
by i, where Dt is the anticipated demand count for step t.

We model the state and decisions for each charging slot
b ∈ B over the time steps t ∈ T . The key decision variables
are introduced below. yb,t ∈ {0, 1}: binary variable indicating
if the battery in charging slot b is charging during time
step t. zb,t ∈ {0, 1}: binary variable indicating if the (fully
charged) battery in charging slot b is selected for a swap at the
beginning of time step t. SOCb,t ∈ [0, 1]: continuous variable
representing the SOC of the battery residing in charging slot
b at the end of time step t. pbtrb,t ∈ [0, pbtr,max]: continuous
variable representing the charging power to the battery in
charging slot b during time step t. δb,i,t ∈ {0, 1}: binary
variable indicating if the battery from charging slot b is
assigned to serve the i-th EV demand (i ∈ It) arriving during
time step t. z′i,t ∈ {0, 1}: binary variable indicating if the i-
th EV demand (i ∈ It) arriving during time step t receives
plug-in charging (i.e., is not served by the BSS).

Let ∆T denote the duration of a single time step (e.g.,
∆T = 1 hour). Key system parameters governing charging
rates are pbtr,max, the maximum charging power for a BSS
slot, and pplug,max, the assumed constant charging power for
the regular on-site plug-in chargers. Let SOCinit

b denote the
known initial SOC of the battery in slot b before the first time
step (t = 1). For notational convenience in the constraints, we
define SOCb,0 ≡ SOCinit

b . Let SOCev,arr
i,t be the assumed

arrival SOC of the battery from the i-th EV arriving at time
t. Note that this is treated as an input parameter.



B. Objective Function
The BSS’s operation objective is to minimize the total

carbon emissions over the horizon T , by choosing the optimal
values for the decision variables:

min
yb,t,zb,t,p

btr
b,t ,

δb,i,t,z
′
i,t

∑
t∈T

∑
b∈B

CIt · pbtrb,t ·∆T

+
∑
t∈T

∑
i∈It

(
T∑

h=t

CIh ·∆eevh,i,t

)
· z′i,t

+M
∑
t∈T

∑
i∈It

z′i,t, (1)

where yb,t, zb,t, δb,i,t, z
′
i,t are binary decisions, SOCb,t is the

state of charge, and pbtrb,t is the charging power, across all slots
b, demands i, and time steps t. The first term represents the
emissions from charging batteries within the station’s slots,
calculated from the energy consumed (pbtrb,t ·∆T ) and carbon
intensity CIt. The second term accounts for emissions from
EVs using plug-in charging. The parameter ∆eevh,i,t denotes
the amount of energy added to the i-th EV (which arrived at
time t) during a subsequent time h (where h ≥ t). To compute
∆eevh,i,t, we first determine the total energy needed to charge
the ith EV from SOCev,arr

i,t to 100%. This total energy is
then allocated across time slots starting from t according to
a greedy rule: at each time step h, the EV receives either
∆eevh,i,t = pplug,max · ∆t or the remaining amount needed
to complete the charge, whichever is smaller. The third term
applies a large penalty M for each EV assigned to plug-in
charging (z′i,t = 1), aiming to prioritize fast turnaround by
satisfying demand via battery swaps whenever feasible and
discouraging plug-in charging.

C. Constraints
The model incorporates the following constraints to ensure

proper operation:

yb,t + zb,t ≤ 1, ∀ b ∈ B, ∀ t ∈ T (2)

pbtrb,t ≤ pbtr,max · yb,t, ∀ b ∈ B, ∀ t ∈ T (3)

pbtrb,t ·∆T ≤ (1− SOCb,t−1) · emax · yb,t,
∀ b ∈ B, ∀ t ∈ T (4)

zb,t ≤ SOCb,t−1, ∀ b ∈ B, ∀ t ∈ T (5)∑
b∈B

δb,i,t + z′i,t = 1, ∀ t ∈ T , ∀ i ∈ It (6)∑
b∈B

δb,i−1,t ≥
∑
b∈B

δb,i,t,

∀ t ∈ T , ∀ i ∈ It, i ≥ 2 (7)

SOCb,t · emax = (1− zb,t) · (SOCb,t−1 · emax + pbtrb,t ·∆T )

+ zb,t ·
∑
i∈It

(
SOCev,arr

i,t · emax · δb,i,t
)
,

∀ b ∈ B, ∀ t ∈ T (8)∑
b∈B

zb,t +
∑
i∈It

z′i,t = Dt, ∀ t ∈ T (9)

Eq. (2) requires that a slot b will either be charging
(yb,t = 1) or be selected for a swap (zb,t = 1) within the same
time step t. Eq. (3) limits the charging power not to exceed
the maximum charging rate. Eq. (4) enforces energy capacity
limits that the energy delivered during the time step cannot
exceed the battery’s remaining capacity from the previous
state. Eq. (5) ensures a swap operation (zb,t = 1) can only
be initiated if the battery is fully charged at the end of the
previous time step. Eq. (6) assigns EV i arriving at time t
to exactly one BSS slot b for swapping (

∑
b δb,i,t = 1) or

plug-in charging (z′i,t = 1). Eq. (7) enforces that within the
same time step t, an earlier-indexed EV will be given a higher
priority for battery swap. Eq. (8) defines the state transition
for battery energy in slot b: If no swap occurs (zb,t = 0),
the battery energy at the end of t equals to the initial energy
(SOCb,t−1 ·emax) plus the energy charged during t (pbtrb,t ·∆T ).
If a swap occurs (zb,t = 1), the battery energy in the slot is
updated to the arrival energy of the assigned incoming EV
(SOCev,arr

i,t · emax · δb,i,t). Eq. (9) ensures that the number
of demands served by BSS swaps (

∑
b zb,t) plus the number

served by plug-in charging (
∑

i z
′
i,t) must equal the total

anticipated demand Dt for time t.

IV. METHODOLOGY

A. System Overview

Our proposed carbon-aware charging strategy integrates on-
line forecasting and rolling horizon optimization. The system
collects historical and real-time data (EV demand, grid CI,
weather), utilizes online update models to predict future EV
swap demand and grid CI, and employs a rolling horizon
optimization framework based on these predictions to deter-
mine adaptive charging schedules for the batteries in BSS.
Fig 2 depicts this overall architecture, showing the flow of
information from data sources through the prediction models
to the controller executing the optimized schedule.

Fig. 2. System Overview: Data flows through online prediction models to
inform the rolling horizon optimization controller.



B. Rolling Horizon Control and Online Prediction

Rolling Horizon Control Strategy: While Section III
defines the optimization problem over a complete horizon
T assuming perfect information, practical application must
address the inherent uncertainty in forecasting future grid
carbon intensity (CIt) and EV demand (Dt). To manage this
uncertainty and make use of the best available future informa-
tion, we employ a rolling horizon optimization strategy, akin
to Model Predictive Control (MPC). This approach repeatedly
solves the optimization problem using the latest available fore-
casts for a near-term horizon, implements only the immediate
next action, and then re-optimizes in the subsequent step with
updated information and refreshed forecasts obtained from
online prediction models. This allows the system to adapt to
changing conditions dynamically.

The specific workflow of the rolling horizon control is
described as follows. First, at each decision step (e.g., hourly),
the system obtains the latest multi-step forecasts for CIt and
Dt (e.g., for the next 24 hours) from the online prediction
models. Next, the MILP model (formulated in Section III) is
solved using these forecasts over a defined optimization hori-
zon (e.g., 6 hours). Crucially, only the decisions corresponding
to the immediate next time step are actually implemented by
the BSS. Finally, the system state is updated based on the
implemented decisions and observed EV swaps/charges during
the past time step, providing the initial conditions for the
subsequent optimization cycle.

Demand and Carbon Intensity Prediction Models: The
effectiveness of the rolling horizon strategy depends crucially
on the quality of the forecasts. We generate the forecasts for
both EV swap demand and grid CI using a unified method-
ology based on the Transformer architecture [24], chosen for
its strength in modeling complex temporal dependencies. The
models are initially trained offline and feature an online update
component for continuous adaptation.

Input Features and Preprocessing: Models utilize historical
target values (demand counts or CI values) along with relevant
exogenous features known to influence the target variables.
For EV charging demand prediction, inputs include historical
demand counts derived from sources like the City of Palo
Alto Open Data [25], various weather features obtained from
the Global Forecast System (GFS) [26] (such as tempera-
ture, humidity, pressure, precipitation, snow, and irradiance),
standard temporal indicators (e.g., time of day, day of week
encoded cyclically), and holiday flags. For grid CI prediction,
inputs include historical CI values, temporal indicators, and
key grid operational forecasts sourced from platforms like
the California Independent System Operator (CAISO) OASIS
[27]. Specifically, we utilize Day-Ahead Market (DAM) data
including system-wide load forecasts as well as wind and solar
generation forecasts, which are primary drivers of the grid’s
real-time generation mix and thus its CI.

Standard preprocessing steps are applied to the input data
for both models. Missing values are imputed using a forward-
fill followed by a backward-fill strategy. Time-based features

providing essential temporal context are engineered, including
cyclical features generated using sine and cosine transforma-
tions for periodic inputs v with period P (e.g., hour of the
day v ∈ [0, 23], P = 24; month of the year v ∈ [1, 12], P =
12). Subsequently, all input features undergo standardization
(Scaling) to achieve zero mean and unit variance, which
typically benefits model training.

Transformer Model Architecture: Both forecasting tasks
utilize a model based on the Transformer architecture, adapted
for multi-variate time-series prediction. The input sequence is
first embedded, and then positional encoding (PE) is added
to retain sequence order using standard sinusoidal functions.

A stack of Transformer encoder layers processes the se-
quence using multi-head self-attention mechanisms to cap-
ture temporal dependencies. A final output layer maps the
processed representation to the required multi-step forecast
horizon. Models are initially trained offline by minimizing the
Mean Squared Error (MSE) loss function.

Online Update Process: To maintain prediction accuracy
as data patterns drift over time, a unified online update
mechanism is employed. As new demand and CI data become
available, they are stored in historical buffers (e.g., covering
the last 30 days). At regular intervals (e.g., daily), the models
are fine-tuned using recent data from these buffers, typically
minimizing the MSE loss on recent samples. This periodic
updating allows the models to adapt to non-stationary patterns
or distribution shifts, ensuring the forecasts provided to the
rolling horizon controller remain relevant.

V. NUMERICAL STUDIES

In this section, we present the numerical study results of
our proposed model and baseline methods.The computational
tasks in this study were executed on two distinct systems.
Model training and online prediction were performed on a
workstation running Ubuntu 22.04.5 LTS, equipped with an
AMD Ryzen Threadripper 3970X 32-Core Processor and an
NVIDIA GeForce RTX 2080 Ti GPU. All subsequent evalua-
tion and optimization were conducted on an Apple Mac Mini
featuring the M4 processor and 16 GB of unified memory.

A. Datasets and Evaluation Approach

We used hourly data derived from several sources. The
weather forecasts are from GFS [26]. The EV swap demand
counts (Dt) is from the Palo Alto EV charging records (July
2011-Dec. 2020) [25]. The electric load and total emissions
from April 2018 to Dec. 2020 are obtained from CAISO [28].

The hourly grid CI (CIt), a key input for our optimization,
was calculated from the CAISO demand (Pt) and emission
(Et) data using the following formula with the unit of grams
of CO2 equivalent per kilowatt-hour (gCO2eq/kWh):

CIt[gCO2eq/kWh] =
Et[mTCO2/h]

Pt[MW]
× 1000

To simulate the state of depleted batteries arriving for a swap,
the initial SOC for each demand instance (γi,t in Eq. (8))
was sampled from a distribution designed to approximate real-
world conditions. First, a raw value γraw was drawn from a



log-normal distribution, characterized by the mean (µ) and
standard deviation (σ) of the variable’s natural logarithm:
γraw ∼ LogNormal(µ = 3.5, σ2 = 0.42). The final SOC value
used in the simulation was then obtained by clamping γraw
to a realistic range: γi,t = max(3%,min(γraw, 85%)). This
approach provides typical EV battery levels observed upon
arrival at charging or swapping facilities.

To avoid potential anomalies related to the COVID-19
pandemic, all prediction models and optimization evaluations
used data only up to December 31, 2019. A multi-set evalu-
ation methodology was employed. Starting from November
26, 2019, and working backward, we extracted 40 distinct
72-hour datasets. For each dataset, a 48-hour rolling horizon
simulation was performed. All reported results represent the
average performance across these 40 datasets.

B. Prediction Model Training Configuration

The Transformer models for both EV demand and grid CI
prediction underwent an initial offline training phase followed
by online adaptation. For the initial offline training phase,
both Transformer models were optimized using the Adam
optimizer. Key hyperparameters were set as follows: the input
sequence length is 120 hours, the prediction horizon is 24
hours, the batch size is 128, and the initial learning rate is
0.0001. The Transformer architecture itself was configured
with a model dimension (dmodel) of 128, 8 attention heads
(nhead), and 6 layers, utilizing a dropout rate of 0.2 for
regularization. Training was conducted for a maximum of 200
epochs, with early stopping implemented based on validation
performance with a patience of 20 epochs.

To maintain accuracy as data patterns evolve, the models
were continuously adapted during the online update phase.
This adaptation was performed via daily fine-tuning, utilizing
recent historical data stored within a 30-day memory buffer.
Distinct online update rates were used for this process: 0.001
for the EV demand model and 0.0003 for the CI model.

C. Prediction Model Performance

The online prediction models, evaluated on the pre-2020
test data, yielded the following performance: The Root Mean
Squared Error (RMSE) and Mean Absolute Error (MAE)
of EV demand prediction are 1.66 counts/hour and 0.76
counts/hour, respectively. The RMSE and MAE of grid CI
prediction are 22.31 gCO2eq/kWh and 10.29 gCO2eq/kWh,
respectively. Note that this study does not aim to achieve
the highest possible forecasting accuracy, but rather to use
the prediction models as key components of the optimization
framework. We skip the direct comparisons with studies that
solely focused on forecasting, as the prediction accuracy
achieved is sufficient to demonstrate the effectiveness of the
proposed framework. Improving forecasting accuracy can be
explored in future research.

D. Optimization Configuration

The rolling horizon MILP simulations were conducted for
each 48-hour test set using the following configuration. The

optimization employed a 6-hour look-ahead horizon with a
time step duration ∆T = 1 hour. A homogeneous battery
capacity of 75 kWh was assumed, and the maximum charging
rate within the BSS slots (pbtr,max) was set equivalent to
charging 50.0% SOC per hour (corresponding to 37.5 kW).
Separate simulation runs were performed for BSS configura-
tions with 5, 10, and 15 battery slots. Gurobi was used as the
MILP solver for all runs, each simulating a 48-hour period,
with a solver time limit of 3600 seconds and an aggressive
presolve setting (Presolve=2).

E. Computation Time

To assess the real-world feasibility of the MILP-based ap-
proach, we analyzed its computation time. Table I summarizes
the per-step optimization time, which are critical for real-time
control.

TABLE I
PER-STEP OPTIMIZATION TIME (SECONDS)

Slots Mean Median 25th Pctl. 75th Pctl.
5 0.053 0.054 0.013 0.081
10 0.542 0.215 0.042 0.677
15 1.203 0.501 0.089 1.019
20 6.937 0.802 0.157 1.501

Pctl: Percentile

The per-step computation time is substantially shorter than
the one-hour decision interval, demonstrating the practicality
of our approach for real-world deployment. However, we
observed that for larger configurations—such as the 20-slot
case—certain steps required over 30 minutes to solve,
highlighting the exponential growth in problem complexity.
These observations suggest that while the current MILP-based
approach is suitable for small-scale BSS, its scalability poses
challenges for real-time operations in larger systems. This
underscores the need for more computationally efficient
methods, as further discussed in Section VI

F. Baseline Strategies and Evaluation Metrics

The performance of the proposed strategy, referred to as
the Rolling Horizon with Prediction, was compared against
three other strategies. The first is a baseline strategy, which
represents a “greedy” operational approach. When a swap
occurs, the returned depleted battery is placed in an available
slot and immediately begins charging at the maximum rate
until it reaches 100% SOC without considering grid carbon
intensity. The second strategy is the Price-Aware Strategy,
which uses the same optimization framework but aims to
minimize the electricity cost based on predicted EV demand
and time-of-use (TOU) prices [29], representing a common
economic-driven approach. The third is the Rolling Horizon
with Actual Value. This represents an idealized scenario with
perfect foresight, utilizing the same optimization framework as
the proposed strategy but operating with actual, known future
demand and CI values rather than predictions.



Performance is evaluated based on the total carbon emis-
sions (kg CO2eq) averaged across the 40 test sets, and the
carbon reduction (%) compared to the Baseline strategy.

G. Simulation Results

The performance of the Baseline strategy and the carbon-
aware strategies (using either predicted data or actual data)
across three BSS configurations is summarized in Table II.

TABLE II
EMISSIONS AND CARBON REDUCTION VS. BASELINE

Slots Baseline
(kg CO2eq)

Price-
Aware

Carbon-Aware
(Prediction)

Carbon-Aware
(Actual)

5 4897.93 4825.39
(1.6%)

4806.34
(1.8%)

4781.68
(2.5%)

10 4935.43 4768.22
(3.4%)

4727.35
(4.2%)

4688.42
(5.2%)

15 4894.19 4652.34
(4.9%)

4590.17
(6.2%)

4524.51
(7.8%)

20 4887.25 4606.6
(5.5%)

4508.92
(7.5%)

4390.98
(10.6%)

Values in each cell show avg. absolute emissions (kg CO2eq) and the
percentage reduction (%) vs. Baseline.

These results demonstrated the effectiveness of leveraging
CI predictions to reduce the carbon footprint of BSS. The
Rolling Horizon with Actual Value Strategy shows the poten-
tial emission reduction achievable with perfect information,
while the gap between the Rolling Horizon with Actual
Value and Prediction strategy reflects the impact of prediction
inaccuracies. As detailed in Table II, while the economic-
driven Price-Aware strategy also achieves carbon reductions
because low-price periods often coincide with low-CI periods
from high renewable generation, our proposed carbon-aware
approach consistently outperforms it across all scenarios.
Increasing the number of battery slots generally improved the
average carbon reductions achieved by the proposed strategy
compared to the Baseline Strategy, with reductions ranging
from 1.8% for 5 slots to 7.5% for 20 slots. This highlights the
increased flexibility for shifting charging load towards lower
CI periods when more battery swapping slots are available.

To illustrate the operational dynamics of the proposed
carbon-aware strategy, Fig. 3 presents a representative example
from one 48-hour simulation period (using the 15-slot con-
figuration). The figure compares the hourly charging power
(in MW) of the Baseline strategy, the Rolling Horizon with
Prediction, and the Rolling Horizon with Actual Value, against
the actual grid CI profile for that period. It can be observed
that both carbon-aware strategies successfully shift significant
portions of their charging load away from high-CI periods
towards hours with lower grid CI, compared to the Baseline
strategy which charges immediately whenever a battery is
available.

To evaluate the robustness of the proposed strategy under
high uncertainty and potential stress conditions, we performed
a sensitivity analysis on the prediction errors. We introduced
structured noise into the forecasts, simulating scenarios with

Fig. 3. Hourly charging power comparison versus actual carbon intensity for
a representative 48-hour period (15-slot configuration). Illustrates how carbon-
aware strategies shift charging to low-CI periods compared to the Baseline.

increasing levels of error. This noise was sampled from a
normal distribution, with the standard deviation proportional
to the historical pointwise absolute error of our model and
scaled by a multiplier α. As summarized in Table III, the
strategy maintains strong performance under moderate noise
levels, exhibiting only a gradual reduction in carbon savings.
For example, at α = 2.0, the approach still achieves a
3.2% carbon reduction. However, under extreme prediction
errors (e.g., α = 5.0), performance can degrade significantly,
even resulting in negative outcomes (i.e., “carbon leakage”).
These findings highlight the importance of improving forecast
accuracy to ensure the reliability of carbon-aware scheduling
in volatile operational environments.

TABLE III
IMPACT OF PREDICTION ERROR ON CARBON EMISSION REDUCTION

(20-SLOT CASE)

Scenario Noise Multiplier (α) Carbon Reduction (%)
Perfect Foresight N/A 10.6%
Original Prediction 0.0 7.5%
Noise Level 1 1.0 6.6%
Noise Level 2 1.5 5.6%
Noise Level 3 2.0 3.2%
Noise Level 4 3.0 1.8%
Noise Level 5 5.0 -2.7%

VI. CONCLUSION

This paper developed a carbon-aware framework for
scheduling charging at EV battery swapping stations (BSS).
The framework uses online predictions for grid carbon inten-
sity (CI) and EV demand, combined with a rolling horizon
optimization to determine optimal charging schedules. The
experiments, using real-world data, demonstrated that the
proposed framework cuts emissions compared to the baseline
greedy battery charging strategy. We found an average carbon
reductions of 1.8% with 5 battery slots, and up to 7.5% with 20



battery slots, highlighting how increased scheduling flexibility
with more battery slots can lead to greater emission reductions.

Our study also highlighted several limitations that open
up avenues for future research. First, for larger BSS con-
figurations, it is essential to develop more computationally
efficient optimization methods (e.g., reinforcement learning) to
overcome the limitation of commercial MILP solvers. Second,
future studies should extend the optimization framework to
be more comprehensive by examining cost-emission trade-
offs through a multi-objective model. This involves creating
a holistic cost model that includes not only time-varying
electricity prices but also the economic impact of battery
degradation and effects on service quality. A key outcome
would be calculating the unit emission reduction cost for com-
parison against other technologies. Third, improving prediction
accuracy for demand and CI is key, alongside validating the
algorithm by integrating data from actual Battery Management
Systems (BMS) in a hardware-in-the-loop setting to enhance
real-world viability.
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