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Abstract—Quantifying locational carbon emissions in power
grids is crucial for implementing effective carbon reduction
strategies for customers relying on electricity. This paper presents
a carbon-aware optimal power flow (OPF) framework that in-
corporates data-driven carbon tracing, enabling rapid estimation
of nodal carbon emissions from electric loads. By developing
generator-to-load carbon emission distribution factors through
data-driven technique, the analytical formulas for both average
and marginal carbon emissions can be derived and integrated
seamlessly into DC OPF models as linear constraints. The
proposed carbon-aware OPF model enables market operators
to optimize energy dispatch while reducing greenhouse gas emis-
sions. Simulations on IEEE test systems confirm the accuracy and
computational efficiency of the proposed approach, highlighting
its applicability for real-time carbon-aware system operations.

I. INTRODUCTION

The decarbonization of power systems is a top priority to
combat climate change. In 2023, the U.S. electric power sector
emitted 1,427 million metric tons of CO2, accounting for
over 29.7% of the nation’s total energy-related emissions [1].
Effective grid decarbonization relies on accurate measurement
of carbon emissions associated with both electricity production
and consumption, commonly referred to as carbon tracing.
This process quantifies emissions, providing a useful signal
for decisions related to decarbonization strategies. Since the
demand for electricity drives fossil fuel consumption from
power generation stations, it is essential to calculate not only
carbon emission from generation but also end-user carbon
footprints by attributing generation-based emissions to con-
sumers in proportion to their electricity usage.

Existing literature explores various methods for quantifying
carbon emissions within power grids, emphasizing the need
for tools that measure emissions at the nodal level to guide
effective carbon reduction practices. Traditional methods for
calculating system-level carbon emissions across all generators
without considering geographical or load-specific variations.
Virtual carbon flow models [2] have emerged to track car-
bon transfers between regions, while statistical [3], [4] and
machine learning [5] forecasting models utilize factors like
weather and load to predict network or region-wide emissions.
However, they fail to provide location-specific insights.

Recent research has focused on developing tools for nodal
emission calculations to support real-time operation by grid
operators [6]. Two key metrics are nodal average carbon

emissions, which reflect the overall carbon intensity of power
consumption, and nodal marginal carbon emissions, which
measure increase in overall carbon emission due to incre-
mental load changes. Specifically, reference [7] establishes
an incremental optimal power flow (OPF) model to evalu-
ate the marginal carbon emissions for a given power flow
scenario. Reference [8] quantifies the changes in system-
wide carbon emissions resulting from the activation of local
demand response resource. Reference [9] implements a load
control strategy that uses a lookup table to evaluate nodal
marginal carbon emissions. Reference [10] proposes a load-
shifting algorithm with an incremental OPF model to capture
the marginal carbon emissions of data centers. These methods
typically require solving an incremental OPF near a specified
operating point to capture locational carbon emissions, yet
solving an integrated system optimization problem with carbon
awareness remains challenging.

Analytical methods using carbon emission flow have also
been explored. Reference [11] established carbon emission
flow equations and employed iterative algorithms to trace car-
bon emissions back to specific generators, though the solution
lacks convergence guarantees, limiting its practical application.
Reference [12] calculates the nodal power flow mix through
analytical derivations and employs matrix inversion to map
carbon emissions from generators to demands. However, the
invertibility of the matrix cannot be guaranteed in the presence
of loop flows and bilateral contracts. More recent innovations
address these limitations by directly linking generator emis-
sions to individual nodal loads using computationally efficient
depth-first search algorithms [13], which calculate both aver-
age and marginal carbon emissions. However, this approach
serves primarily as an evaluation tool for given system states
and is challenging to integrate into an OPF problem. To
address this, [14] introduces a carbon-aware OPF model with
nonlinear carbon flow equations, offering a promising carbon
accounting tool for economic dispatch, though its non-convex
formulation significantly increases computational costs.

In response to the limitations of existing studies, this
paper presents a data-driven method to determine both the
average nodal carbon emission (ANCE) rate and the locational
marginal carbon emission (LMCE) rate. Given that carbon
flow is physically coupled with power flow, we trained an
affine mapping to trace power flows from individual generators



to nodal loads, which are called generator-to-load distribution
factors. Using these factors, the analytical forms of ANCE and
LMCE are derived. The resulting carbon emission quantifica-
tion tool is linear, making it straightforward to integrate into
optimal power flow models. Accordingly, this paper proposes
a carbon-aware OPF model based on the data-driven carbon
tracing approach. The proposed method is verified using
several IEEE test systems. The test results demonstrated the
effectiveness of the proposed method.

II. METHODOLOGY

A. Tracing Nodal Carbon Emission

Consider a power network with N nodes and L transmission
lines. Let N denote the set of all nodes, L the set of lines,
and G the set of generators. At each time period, dn represents
the load demand at node n. For a node without load, dn = 0.
The system operator solves the OPF problem to determine the
power dispatch pg for G generators. Each generator g has a
carbon emission rate γg , expressed in units of lbs CO2/MWh.
The goal of this paper is to model carbon emissions in the
OPF framework and calculate the nodal carbon emission en
attributed to the loads at each node n.

The carbon emissions in a power system are created by the
generators and subsequently allocated to the electric loads.
The power consumed is not inherently tied to any specific
generator. To facilitate carbon tracing, we assume the power
flow is divisible and it follows a consistent allocation rule.
This is formally stated in Assumption 1, which enables a
proportional division of power flow.

Assumption 1. For any node n, the proportion of power inflow
attributable to generator g is equal to the proportion of the
power outflow attributable to generator g.

Assumption 1 implies that generators’ contributions are pro-
portionally allocated across the network, ensuring consistency
in carbon tracing of power flows. Under Assumption 1, the
contribution of each generator g to the nodal load n is denoted
as dn,g , and the nodal carbon emission en is computed using
(1), where Fg→n(·) denotes the mapping used to calculate the
contribution of generator g to load n.

dn,g = Fg→n(pg) (1a)

en =

G∑
g=1

γg dn,g (1b)

By introducing the nodal carbon emission, we can incorpo-
rate carbon-aware constraints into the OPF problem, as shown
in (2), where en,t denotes the carbon emission of node n on
time period t. Also, the nodal average carbon emission rate
δn can be computed using (3).

T∑
t=1

en,t ≤ Emax
n (2)

δn = en/dn (3)

B. Data-Driven Estimation of Nodal Carbon Emission

It is shown in (1) that the key to calculating the nodal carbon
emission is determining the specific form of the generator-
to-load function Fg→n(·). In fact, existing literature has in-
vestigated formulations for Fg→n(·). For instance, reference
[14] utilizes a non-convex mapping known as carbon flow
equations, while [13] proposes a tree search algorithm based
on a given flow result to determine the generator-to-load
allocation. These studies indicate that there exist an approxi-
mately linear mapping between pg and dn. In this paper, we
assume this mapping to be affine and employ a data-driven
approach to determine it. Compared to existing methods, the
proposed carbon tracing formula can be seamlessly integrated
into the OPF framework as linear constraints, maintaining the
computational efficiency of the OPF model and enabling a
carbon-aware OPF solution.

We define the generator-to-load contribution mapping
Fg→d(·) with an affine formulation, given by dn,g = αn,g pg ,
where αn,g ∈ [0, 1] represents the generator-to-load contribu-
tion factor of generator g to the nodal load n. The total carbon
emission of node n can then be estimated as:

en =

G∑
g=1

αn,gγgpg (4)

Here, the term αn,gγg is referred to as the carbon emission
distribution factor. The carbon emission rate γg is given for
each generator g. Our objective is to determine αn,g through
data-driven techniques. To ensure the physical relevance of
the data-driven results, we adopt Assumption 2. Assumption
2 essentially represents a lossless scenario, where all generated
power is ultimately allocated to the nodal loads.

Assumption 2. Under a lossless DC power flow model, the
generator-to-load distribution factors satisfy:

∑N
n=1 αn,g =

1,∀g ∈ G.

A constrained regression problem is defined to determine
αn,g . Given the power flow set S, (5) can be solved for each
generator to obtain the generator-to-load distribution factors.

min
αn,g

Jg =

S∑
s=1

(
d(s)n − αn,gp

(s)
g

)2

(5a)

s.t.
N∑

n=1

αn,g = 1 (5b)

(5) is a convex non-linear programming problem, which can
be efficiently tackled by the commercial solvers like Gurobi.

C. Locational Marginal Carbon Emission

After obtaining the factors αn,g , we can express nodal
demand in terms of generator output using (6). By combining
(4) and (6), we can derive the locational marginal carbon
emission rate for each node.

dn =

G∑
g=1

αn,gpg. (6)



Let µn denote the LMCE rate at node n, which can be
calculated using (7).

µn =
∂en
∂dn

. (7)

The closed form solution for the LMCE rate is shown in (8).
Details of the derivation for (8) are provided in Appendix A.

µn =
∂en
∂dn

=

∑G
g=1 α

2
n,gγg∑G

g=1 α
2
n,g

. (8)

The LMCE rate µn can be interpreted as the weighted
carbon emission rate of generators γg , with weighting factors
α2
n,g . Since the generator-to-load distribution factor αn,g is

computed through a data-driven method, µn is referred to as
the data-driven LMCE rate.

Remark 1. The data-driven LMCE rate (8) acts as a tool
to approximate the actual carbon emissions. The power flow
scenario considered for the LMCE should be adequately rep-
resented by the power flow scenarios in the training dataset. In
practical applications, (8) should be adjusted to (9), where G∗

represents the set of generators in service within the evaluated
power flow scenario.

µn =
∂en
∂dn

=

∑
g∈G∗ α2

n,gγg∑
g∈G∗ α2

n,g

(9)

D. Carbon-Aware OPF with Carbon Distribution Factors
This subsection incorporates data-driven carbon emission

distribution factors into the OPF problem, keeping it as an
efficient linear programming (LP) problem with carbon-aware
OPF solutions. The resulting carbon-aware OPF model is
presented in (10).

min
pg,en

fpower(pg,∀g) + fcarbon(pg,∀g) (10a)

s.t.
∑

g∈G
pg −

∑
n∈N

dn = 0 (10b)

pl = Γl,n

(∑
g∈G(n)

pg − dn

)
, ∀l ∈ L (10c)

−Pmax
l ≤ pl ≤ Pmax

l , ∀l ∈ L (10d)

Pmin
g ≤ pg ≤ Pmax

g , ∀g ∈ G (10e)

en =
∑

g∈G
αn,gγgpg, ∀n ∈ N (10f)∑

n∈N
en ≤ Etotal (10g)

The objective (10a) minimizes the overall cost, which
includes the power-related cost fpower and the carbon emission-
related cost fcarbon. Depending on the specific application,
fpower may represent generation costs, network losses and etc.
The term fcarbon is is defined to capture the equivalent costs
for carbon emissions associated with either the generation
or demand side, such as carbon emission permit fees for
generators. A sample cost function is provided in (11).

fpower :=
∑

g∈G

(
agp

2
g + bgpg + cg

)
, (11a)

fcarbon := cemp
∑

g∈G
γgpg, (11b)

where (11a) denotes the total generation cost in quadratic form
with parameters ag , bg , and cg , and (11b) denotes the carbon
emission cost for generators with permit price cemp.

(10b) represents the system-wide power balance constraint
under a lossless DC power flow model. (10c) calculates line
power flows using the power transfer distribution factors Γl,n,
where G(n) denotes the set of generators located at node n.
Constraints (10d) limit the allowable range for line power
flows, while constraints (10e) enforce the capacity limits for
generators. (10f) calculates nodal carbon emissions based on
data-driven carbon emission distribution factors, and (10g)
regulates the allowable system-level carbon emission. (10g)
provides a basic carbon constraint for illustration purposes.
With (10f), various customized carbon constraints can be
developed as those in reference [14].

The proposed carbon-aware OPF framework (10) has a
computationally efficient LP structure, allowing direct ex-
tension to a multi-period dispatch model or integration into
the unit commitment problem. This formulation provides a
carbon-aware generalization of the DC-OPF model and can
be efficiently solved through linear programming solvers such
as CPLEX and Gurobi.

III. CASE STUDY

The proposed carbon-aware OPF is evaluated on several
IEEE test systems, including the 5-bus, 24-bus, 30-bus, and
118-bus system from MATPOWER 7.1 [15]. Numerical sim-
ulations are conducted based on the DC-OPF solver in MAT-
POWER. Load demands are adjusted according to a uniform
distribution within the range [0.7, 1], and sample generation
follows the method specified in [16]. Each test system is
accompanied by 1,000 data samples, with 80% of the samples
randomly selected as the training dataset and the remaining
20% as the testing dataset. Generators are assumed to be
powered by fossil fuels, with carbon emission rates γg ranging
from 113 to 2,388 lbs CO2/MWh. The specific settings for
generator carbon emissions can be found in [13].

A. Data-driven Generator-to-load Distribution Factors

The generator-to-load distribution factors, αn,g , are funda-
mental for calculating nodal carbon emissions. In this subsec-
tion, we estimate the data-driven generator-to-load distribution
factors αn,g and present the load approximation errors using
the estimated αn,g and generator outputs in Table I. The
accuracy metrics include the mean absolute error (MAE)
and maximum absolute error (Max-AE), both measured in
megawatts (MW). As shown in Table I, the trained model
demonstrates minimal load approximation errors, with an av-
erage MAE of 6.64×10−7 MW and a Max-AE of 2.81×10−5

MW. These results indicate that αn,g effectively distributes
generator output to meet load demands, which is crucial for
accurate carbon tracing. The data also reveals a correlation
between accuracy and system size: the highest Max-AE occurs
in the 118-bus system, while the 5-bus system shows near-
perfect result, with negligible error. This suggests that system
complexity may impact the distribution factor’s precision, with
smaller systems exhibiting more accurate results.



TABLE I
ERROR OF LOAD DEMANDS APPROXIMATED BY DATA-DRIVEN

GENERATOR-TO-LOAD FACTORS

Systems MAE (MW) Max-AE (MW)
5-bus 3.81× 10−9 1.12× 10−8

24-bus 2.37× 10−6 2.58× 10−5

30-bus 1.30× 10−8 1.23× 10−6

118-bus 2.68× 10−7 8.53× 10−5

Tol. Avg. 6.64× 10−7 2.81× 10−5

TABLE II
DATA-DRIVEN GENERATOR-TO-LOAD FACTORS OF THE 5-BUS SYSTEM

Indices G-1 G-2 G-3
Bus-1 0 0 0
Bus-2 0.3154 0.2931 0.3021
Bus-3 0.2775 0.3099 0.2979
Bus-4 0.4071 0.3970 0.4000
Bus-5 0 0 0

The trained generator-to-load distribution factors for the 5-
bus system are examined in detail. This system includes three
generators located at buses 1, 3, and 5. As shown in Table
II, generators G-1, G-2, and G-3 supply the loads at buses
2, 3, and 4, using distribution factors that reflect the load-
sharing dynamics among generators. Notably, bus-4 receives
the highest contributions from all generators, with distribution
factors around 0.4, indicating a balanced load-sharing across
the generators. In contrast, buses 2 and 3 exhibit greater
variability, with slightly lower impacts from G-2 at Bus-2 and
G-1 at Bus-3, respectively. Buses 1 and 5 do not serve load
and thus has zero generator-to-load factors. This data-driven
analysis highlights the spatio distribution of generator-to-load
distribution factors across the network.

B. Data-driven Locational Marginal Carbon Emission Rate

In this subsection, we use (8) to calculate the LMCE rate,
µn for a 30-bus system with 6 generators and settings of γg de-
tailed in Table III. The resulting data-driven LMCE rates, µn,
are shown in Fig. 1, alongside benchmark values derived from
sensitivity analysis [6], [13] for each node. The node indices in
Fig. 1 are sorted by µn values. From the test results in Fig. 1,
it is evident that the calculated LMCE rates µn for the 30-bus
system closely align with the benchmark values, demonstrating
high accuracy. This data-driven approach effectively captures
emission variations across the network, facilitating effective
customer level carbon reduction in the power system.

TABLE III
CARBON EMISSION RATE OF GENERATORS IN THE 30-BUS SYSTEM

Gen. Index G-1 G-2 G-3 G-4 G-5 G-6
γg (lbs CO2/MWh) 565 1890 1145 1446 644 961
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Fig. 1. The locational marginal carbon emission of the 30-bus system (with
the indices on the x-axis sorted by the values of µn).

TABLE IV
PERFORMANCE OF THE CARBON-AWARE OPF ON 30-BUS SYSTEM

Metric Baseline-OPF Carbon-OPF
Power Cost ($) 3.58× 103 3.70× 103

Carbon Emission Cost ($) 1.82× 103 1.71× 103

Total Cost ($) 5.40× 103 5.41× 103

Total Emission (CO2) 101.5 ton 95 ton
Solution Time (s) 0.082 0.089

C. Evaluation of Carbon-Aware OPF

In this subsection, the performance of the proposed carbon-
aware OPF problem (10) with objective function (11) is
evaluated. We define the OPF problem (10)-(11) without
carbon constraints (10f)-(10g) as the baseline-OPF problem,
while the version incorporating carbon constraints represents
the proposed carbon-aware OPF. The parameter cemp is set
as 0.009$/lbs CO2. The carbon-aware OPF includes a carbon
constraints with Etotal = 95 ton CO2.

The results of the two OPF problems on the 30-bus sys-
tem are presented in Table IV. As shown in Table IV, by
introducing the carbon emission constraint, the carbon-aware
OPF successfully identifies a generator dispatch scheme with
reduced emissions, lowering emitted CO2 from 101.5 tons to
95 tons. This reduction led to a slightly increased generation
cost, from $3.58 × 103 to $3.70 × 103. The carbon-aware
approach also results in a decrease in carbon emission cost,
from $1.82×103 to $1.71×103, partially offsetting the higher
power cost. Consequently, the total operational cost remains
nearly unchanged, with only 0.19% or $10 increase in total
cost. The OPF solution time experiences a slight increase from
0.082 to 0.089 seconds, indicating that the proposed method
maintains computational efficiency. The carbon-aware OPF
achieves a significant reduction in emissions with minimal cost
impact, demonstrating the effectiveness of emission constraints
in aligning power dispatch with environmental objectives
while maintaining cost stability.



IV. CONCLUSION

This paper developed a data-driven approach to formulate
and solve carbon-aware OPF problem, providing valuable
locational marginal carbon emission rate signals to end-use
customers to effectively reduce their carbon footprint. By
estimating generator-to-load distribution factors, the proposed
method enables the derivation of closed-form solution for
both average and marginal nodal carbon emission rates. The
integration of generator-to-load distribution factors into the
OPF framework yields carbon-aware energy resource dis-
patch decisions, balancing power system operation cost and
emissions reduction objectives. Simulation results on IEEE
test systems demonstrate that the proposed method achieves
significant emissions reductions with minimal impact on total
operational costs, while maintaining computational efficiency.
The proposed method serves as a valuable tool for supporting
real-time carbon accounting and facilitating carbon-oriented
demand management. Future work will focus on extending
the model to incorporate multi-period and stochastic OPF
scenarios, further enhancing its applicability to dynamically
changing and uncertain grid conditions.

APPENDIX

A. Derivation of Locational Marginal Carbon Emission

Applying the chain rule to (4), we have:

∂en
∂dn

=

G∑
g=1

(
∂en
∂pg

· ∂pg
∂dn

)
(12)

Since dn is a function of pg , we need to find ∂pg

∂dn
. However,

directly computing ∂pg

∂dn
is difficult because dn depends on all

pg . Instead, we can consider the relationship between en and
dn via their gradients with respect to pg . Let us define the
gradient vectors of en and dn with respect to pg , which are
shown in (13) and (14), respectively.

∇pen =

(
∂en
∂p1

, . . . ,
∂en
∂pG

)
= (αn,1γ1, αn,2γ2, . . . , αn,GγG)

(13)

∇pdn =

(
∂dn
∂p1

, . . . ,
∂dn
∂pG

)
= (αn,1, αn,2, . . . , αn,G) (14)

Now we can derive ∂pg

∂dn
by using the gradient vectors as:

∂en
∂dn

=
∇pen · ∇pdn
∥∇pdn∥2

, (15)

where ∇pen · ∇pdn is the dot product of the two gradient
vectors and ∥∇pdn∥2 is the squared magnitude (norm) of the
gradient ∇pdn.

The numerator and denominator of (15) are computed as:

∇pen · ∇pdn =

G∑
g=1

(αn,gγg)(αn,g) =

G∑
g=1

α2
n,gγg (16a)

∥∇pdn∥2 =

G∑
g=1

(αn,g)
2 (16b)

Substituting them back into (15), we can finally obtain the
locational marginal carbon emission rate:

∂en
∂dn

=

∑G
g=1 α

2
n,gγg∑G

g=1 α
2
n,g

(17)
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