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ABSTRACT As the power transmission system’s energy sources become increasingly diversified, the
grid stability is experiencing increased fluctuations, thereby necessitating more frequent and near real-time
monitoring by grid operators. The power system security has been monitored through real-time contingency
analysis and dynamic security assessment framework, both of which are typically based on time-domain
simulations or power flow calculations. Achieving higher accuracy in grid health level prediction often
requires time-consuming simulation and analysis. To improve computational efficiency, this paper develops
machine learning models with phasor measurement unit (PMU) data to monitor the power system health
index, focusing on rotor angle stability and frequency stability. The proposed machine learning models
accurately predict frequency and angle stability indicators, essential for evaluating grid health considering
various contingencies, even when dealing with limited PMU deployment in transmission grids. The
proposed framework leverages a physics-informed graph convolution network and graph attention network
with ordinal encoders, which are benchmarked with multi-layer perceptron models. These models are
trained on dataset derived from an augmented IEEE 118-bus system with different demand levels and
fuel mix, including tailored dynamic generator models, generator controller models, and grid protection
models. The numerical studies explored the performance of the proposed and baseline machine learning
models under both full PMU coverage and various partial PMU coverage conditions, where different data
imputation methods are used for substations without PMUs. The findings from this study offer valuable
insights, such as machine learning model selection and critical PMU locations regarding power equipment,
into the design of data-driven grid health index prediction models for power systems.

INDEX TERMS Attention mechanism, dynamic security, graph neural network, grid health index.

I INTRODUCTION

COnventional power system security assessment applica-
tions primarily rely on time-domain simulation results

of power system dynamics models, often supplemented by
direct methods such as screening techniques for preliminary
stability assessments [1]. Such applications are in practical
use by grid operators [2], [3]. Despite the remarkable im-
provement in computer hardware and simulation algorithms,
it remains a challenge to analyze numerous power system
operating scenarios and contingencies in a short period of
time [4], [5]. On the other hand, machine learning (ML)-
based grid security monitoring applications are in the early
stage of development. Such ML-based applications are in
limited practical use. With the growing diversification of
power system components, the need for near real-time grid
security monitoring is increasing. ML-based grid security
monitoring emerges as a promising solution to address this
need. By employing ML-based algorithms, computationally

intensive stability studies in bulk power systems can be
accelerated, enabling rapid bulk power system security as-
sessment without relying solely on model-based simulations.

Naturally, the accuracy of the ML-based grid security
monitoring algorithms could approach but not surpass that
of the time-domain simulations with power system dynamic
models. Instead of replacing the existing model-based grid
security monitoring systems, the ML-based approaches can
be used for preliminary assessment of the operating scenarios
and contingencies in real time. The operating scenarios and
contingencies that pose the highest level of threat can then
be fed to near real-time time-domain simulations for more
thorough analysis.

Simulation-based grid security assessment systems usu-
ally automatically generate a power flow snapshot of the
current grid condition based on measurement information
obtained through state estimation. The monitoring system
then performs power system dynamic analysis using the
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power flow snapshot as the initial system state for various
contingencies. Despite the advancement in accelerating dy-
namic simulations, this process is computationally-intensive,
typically requiring a few minutes or more for a single
contingency scenario. To train an ML-based grid health pre-
diction algorithm, a sufficiently large number of power flow
snapshots and grid sensor data at substations are required
as input data. The corresponding grid security or health
levels regarding frequency, transient, and voltage stability
are needed as output data. Once the ML-based models are
trained, the online security and grid health assessment will
only take a very short amount of time.

In recent years, research on ML-based grid security mon-
itoring primarily leveraged various graph neural networks
(GNNs) [6]–[12]. The GNNs are a class of deep learning
models tailored for data structured as graphs, where nodes
represent buses in a power grid and edges represent trans-
mission or distribution lines, making GNNs well-suited for
analyzing complex and interconnected systems such as the
power grid. References [6], [7] provide a comprehensive
review of machine learning-based contingency analysis al-
gorithms. The literature surveys identified that data-driven
system monitoring and dynamic studies have not fully ex-
plored the time-varying grid structure and system operat-
ing conditions. Most existing data-driven approaches are
designed to examine the rotor angle stability phenomenon,
and research on dynamic security assessment for frequency
stability is limited. In one such study, convolutional neural
networks were utilized to address frequency stability [13].
Voltage stability has also been studied with GNNs [10].
However, this paper primarily focuses on predicting steady-
state voltage violations, thus overlooking dynamic aspects of
power system behavior.

Reference [8] develops a graph attention network (GAT)
that predicts the dynamic response of synchronous gen-
erators using real-time system measurements. Specifically,
the developed model predicts future dynamic behaviors of
the power grid with the input of the first 10-step dynamic
response following disturbances. This model may be used
for real-time power system control purposes. Reference [9]
proposes a data-driven transient stability assessment model
using the graph convolutional network (GCN) with a multi-
pooling mechanism. Both max pooling and mean pooling are
leveraged to improve the power system stability prediction
performance. This model may be used for dynamic security
assessment purposes. These studies [8]–[10], [13] hypoth-
esize measurement devices are installed in all nodes, i.e.,
substations and power stations, which is not realistic in real-
world transmission systems. In other words, the partial grid
sensor coverage study has been missing in the research on
ML-based grid security assessment algorithms. On the other
hand, grid sensor placement has been separately studied with
no ML algorithms or data-driven approaches [14]–[17].

Reference [14] provides a comprehensive literature review
on grid sensor placement, covering concepts, methods, and
research needs. This reference highlights that most studies in

transmission grids focus on static state estimation, neglecting
dynamic behavior. While some research addresses power
system dynamics, such as rotor angle stability, they primarily
focus on small-signal stability, with minimal attention to
frequency stability. Reference [15] also discusses research
gaps for optimal phasor measurement unit (PMU) place-
ment, pointing out that more research is needed on optimal
PMU placement that considers specific applications such as
controlled islanding, fault tolerance, small-signal analysis,
and voltage stability. Reference [18] specifically addresses
frequency stability application but with a limited number
of PMUs at power stations. In [18], the focus is solely
on tracking the center of inertia during dynamic frequency
response, ignoring frequency nadirs at critical locations.

Many PMU placement studies emphasize the minimum
number of PMUs required to achieve complete system
observability. The optimization problem’s objective function
is often set as minimizing PMU cost or maximizing grid
observability [19]. However, from a grid health monitoring
perspective, which focuses on assessing system strength,
particularly in dynamic security, it is essential to examine
critical substations, considering the connected power com-
ponent to the substation (e.g., tie transformers, generators,
and load feeders). Conventional research has predominantly
focused on observability, with cutting-edge zero injection
bus integration techniques and utilization of SCADA [19]–
[22], which primarily highlight topological observability,
and has given less attention to PMU placements from the
dynamic grid health monitoring perspective. Reference [23]
introduces a PMU placement method using binary parti-
cle swarm optimization that incorporates aspects of power
component-based considerations, optimizing the number of
substations requiring installations to ensure complete net-
work observability while addressing constraints such as
critical measurements, restricted installation locations, and
the upgrade of line relays to dual-use digital relay PMUs.
Although clarifying the optimal number of PMUs is critical,
this approach primarily focuses on the minimum number of
PMUs for observability, rather than specifically optimizing
placements based on critical power equipment for dynamic
grid health monitoring.

Moreover, determining the optimal number of PMUs is
crucial, not only for complete system observability but also
for ensuring that the solution represents a global optimum
rather than a local one. The practical implementation is
further complicated by limitations in PMU channel capacity,
as each PMU can monitor only a finite number of channels,
which underscores the need for efficient placement strategies
and capacity management [19], [20], [24]. Reference [25]
examines critical buses in terms of both observability and
rotor angle stability with pre-determined critical buses for
transient and small-signal stability. However, it does not
address machine learning-based stability assessments, which
are vital for evaluating dynamic grid health through advanced
computational methods.
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Motivated by the lack of thorough studies on grid health
assessment algorithms with limited grid sensor availability,
this paper aims to fill this gap by proposing a measurement-
driven grid health assessment algorithm designed to accom-
modate partial PMU coverage scenarios. While grid health
assessment encompasses both adequacy (the ability to meet
demand) and security (the resilience to disturbances), our
focus in this work is on security—specifically, assessing
the grid’s dynamic stability across different contingency
scenarios. We propose a physics-informed GCN and GAT
network to predict the frequency and angle health index
of power systems. Additionally, this paper offers guidance
to industry practitioners unfamiliar with ML techniques on
how to implement and utilize the proposed algorithm. The
primary contributions of this paper include:

• To promote data-sharing and reproducibility, this paper
creates publicly available pre-contingency power flow
snapshots under various loading levels and realistic con-
tingency analysis results using time-domain simulations
on an augmented IEEE 118-bus system with generator
controller and protection models.

• We propose physics-informed GNNs with an ordinal
encoder, which achieves state-of-the-art performance
in grid frequency and angle health index prediction
tasks. The numerical results provide useful guidance
to industry practitioners in terms of machine learning
model design for grid health index monitoring, which
assesses system strength using hardware and software
to ensure efficient operation.

• The comprehensive numerical study results involving
partial PMU coverage provide useful insights into the
optimization of PMU placement, which should priori-
tize substations with critical power equipment.

The rest of the paper is organized as follows. Section
II overviews the grid health index prediction framework.
Section III presents grid health index prediction models.
Section IV describes the preparation of the dataset and
models for dynamic simulations. Section V evaluates the grid
health index prediction performance through case studies.
Section VI concludes the paper.

II Enhanced Dynamic Security Assessment Frame-
work with Measurement-driven Grid Health Index
Prediction

As mentioned earlier, the proposed measurement-driven grid
health assessment algorithm and model functions as a sup-
plementary tool to the existing dynamic security assessment
(DSA) framework, shown in Fig. 1. As shown in this fig-
ure, the measurement-driven DSA considers all contingency
cases, including those not on the contingency list, after the
initial contingency scenarios screening process that quickly
classifies scenarios into critical and non-critical categories
using simplified assessment methods, such as energy func-
tion approaches. If the proposed grid health index prediction
tool identifies contingency cases that may lead to instability,
then these cases will be further examined by grid operators

FIGURE 1. Overview of dynamic security assessment framework
enhancement by integrating data-driven grid health index prediction.

using time-domain simulation, focusing primarily on the
identified critical contingencies for computational efficiency.

The measurement-driven DSA will be especially useful
when the power grid is undergoing a rapid transition to a new
operation condition, and time-domain simulation is too slow
to keep up. In such cases, the measurement-driven grid health
index prediction model is the preferred tool for generating
contingency analysis reports.

This paper proposes a measurement-driven grid health
index prediction model that mitigates the weakness of the
existing simulation-based real-time contingency analysis sys-
tem for frequency and angular stability studies. The proposed
model is based on GNNs, which are capable of dealing
with both node and branch features. We extended the GNNs
with an attention mechanism and ordinal encoder to further
improve the grid health index prediction performance. The
attention mechanism is a technique in machine learning
that enhances model performance by prioritizing relevant
features.

Comprehensive numerical studies to assess the perfor-
mance of the proposed measurement-driven grid health index
prediction model are critical. In particular, we performed
detailed ablation studies to analyze the impacts of attention
mechanism and ordinal encoder on the grid health index
prediction accuracy. In addition, the performance of the
proposed model is evaluated considering different partial
grid sensor coverage scenarios. Specifically, we have con-
sidered the following types of substations lacking grid sen-
sors: substations with synchronous generators, synchronous
condensers, tie transformers, step-down transformers, and
switching stations. Furthermore, we studied how different
missing value replacement techniques impact the prediction
accuracy for grid health index. In particular, we considered
zero value imputation, peak demand value, and pseudo grid
sensor measurement with errors. These in-depth numerical
studies reveal new insights into the robustness of grid health
prediction performance given partial grid sensor coverage.
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TABLE 1. Inputs of Health Index Prediction Model
Node/branch feature Feature type Measurable

1 Active power output, PG Node Yes
2 Reactive power output, QG Node Yes
3 Active power load, PL Node Yes
4 Reactive power load, QL Node Yes
5 Voltage magnitude, |V | Node Yes
6 Voltage angle, ∠V Node Yes
7 Active power output deviation, ∆PG Node Yes
8 Active power load deviation, ∆PL Node Yes
9 Reactive power output deviation, ∆QG Node Yes

10 Reactive power load deviation, ∆QL Node Yes
11 Fault location, ∆V * Node No**
12 Fault duration, Fdur Node No**
13 Active power transfer, Ptie Branch Yes
14 Reactive power transfer, Qtie Branch Yes

* Three simplified levels: 0, 0.5, or 1 pu of residual voltage.
** auxiliary information (e.g., synthetic value) corresponding to contingency

III Overview of Grid Health Index Prediction Model
This section provides a high-level overview of the grid health
index prediction model, covering its structure and key com-
ponents, including physics-informed GNN, attention mech-
anism, and ordinal encoder. The model was implemented in
Python using the PyTorch framework and is available in the
GitHub repository: github.com/KojiGitCode/OAJPE.

A. Grid Health Index Model Structure
1) Neural Network Architecture
The GCN [26] is selected as a candidate deep learning model
for the grid health index prediction. This is because power
grids can be directly modeled as an undirected graph in
GCN, where each node represents a bus and each edge
represents a branch. An undirected graph is appropriate here
because the direction of active and reactive power flow can
vary with changing grid conditions and configurations. In
addition, the GCN model can easily leverage both the nodal
and the branch data from the power grid by encoding local
and global network information through an edge-conditional
mechanism [27]. This mechanism is implemented using an
edge-conditional (ECC) layer, which allows the model to
process edge features along with node features.

While the GCN is highly effective for supervised learn-
ing on graph-structured data, integrating edge weights into
its training process is challenging. Thus, we propose to
leverage the graph attention network (GAT) [28], [29] to
predict the grid health index. By incorporating the attention
mechanism, the GAT model excels at focusing on critical
power lines by capturing the strength of inter-correlation
between substations and buses. The overall architecture of
the proposed GCN/GAT model and a baseline, multilayer
perceptron (MLP) model are illustrated in Fig. 2. Unlike the
GAT model and GCN with edge-conditional (ECC) layer,
the MLP model cannot directly handle edge features.

2) Input Features
The input features of the GCN/GAT and MLP models are
illustrated in Fig. 2. There are two categories of inputs
to the grid health prediction model. The first category of
inputs represents the pre-fault steady-state system informa-

Graph convolutional layers with attention become graph attention layers.
FIGURE 2. GCN/GAT model (left) and MLP model (right).

tion associated with the buses and branches. The second
category of inputs is related to the contingency information,
which corresponds to the 11-th and 12-th node features in
Table 1. The fault location is indirectly represented by a
synthetic voltage sag value , simplifying fault differentiation
without expanding the feature set. We assume all bus volt-
ages operate around 1.0 pu under normal conditions. For
faults along transmission lines, modeled at the midpoint,
we assign a residual voltage of 0.5 pu to reflect a typical
50% voltage drop at both line ends. For transformer faults,
such as severe three-phase inter-turn faults, both primary and
secondary nodes experience nearly zero voltage, represented
by a residual value of 0.0 pu. Using these residual voltage
values—1.0 pu for normal conditions, 0.5 pu for line faults,
and 0.0 pu for transformer faults—enables effective fault
type differentiation while maintaining a consistent feature set
for efficient model training. The fault duration is normalized
to 200 ms, meaning that, for example, 50 ms of the fault
duration is represented as 0.25. Note that detailed input
features for nodes and edges shown in Table 1 are assumed
to be collected from PMUs.

3) Outputs Representing Grid Health Index
The frequency health index is derived based on the frequency
nadir, which is the lowest frequency level before reaching the
post-steady-state frequency. The angle health index is derived
based on the peak-to-peak angle difference between two
particular units following the fault clearance. Detailed labels
for these grid health indices are defined by separating the
continuous index values into several different categories, as
shown in Table 2. To create a balanced representation of sta-
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ble and unstable scenarios, the range of angle differences is
gradually decreased for smaller angle differences. Similarly,
the frequency range gradually decreases as the frequency
level approaches the rated frequency. This technique allows
the dataset to capture both severe and moderate stability
margins, reflecting a broad spectrum of system behavior
across possible contingencies. This approach generalizes to
other test systems by identifying generator pairs with the
largest pre-contingency angle differences, which are often
most critical for transient stability. Stability thresholds, such
as 90 and 180 degrees, can serve as initial guidelines,
adaptable to the specific grid characteristics. In contrast,
frequency thresholds require adjustment for grid size; for
example, small island grids may experience larger deviations
than bulk power systems. The class labels will be used
as the output of GNNs. Since both outputs are a single
indicator per contingency, these grid health index prediction
tasks are formulated as a graph classification problem. Given
that the task can be viewed as a multi-class classification
problem, the cross-entropy loss function is used to train
the model’s parameters and assess its performance, ensuring
both prediction accuracy and handling any ordinal biases
introduced by the encoder.

B. Graph Neural Network
The inputs of the GCN/GAT model are first passed through
the ECC layer, which updates each node i’s feature vector
from xi to x′

i. This is done by activating the sum of the
product of the weight matrix and the nodal feature vector
and the aggregation of nodal and edge feature vectors via a
parameterized neural network, as shown in (1).

x′
i = ReLU

[
Wxi +

∑
j∈N (i)

xj · hΘ(ei,j)

]
, (1)

where W denotes the weight matrix, hΘ denotes a neu-
ral network (e.g., a multilayer perceptron), xi denotes the
feature vector of the i-th node, and ei,j denotes the edge
feature vector for the edge from the source node, i, to the
target node, j.

The output of the ECC layer is then used as the input of
graph convolutional layers with/without the graph attention
mechanism. The node representations xi are updated at each
graph convolutional layer according to (2).

x′
i = ReLU

W̃ T
∑

j∈N (i)

Âj,i · xj · C

 , (2)

C =

1 +
∑

j∈N (i)

Âj,i

− 1
2
1 +

∑
i∈N (j)

Âi,j

− 1
2

, (3)

where Âi,j denotes an ij-th element of Â = A + I , where
A is the adjacency matrix. It is noted that Ai,j equals 1 if
node i is connected to node j and 0 otherwise.

C. Attention Mechanism
The GAT model [28] employs a refined approach to ana-
lyze graph-structured data through an attention mechanism,

allowing it to focus on specific nodes and their intercon-
nected relationships (represented by edges). The GCN model
leverages pre-assigned edge weights between nodes, while
the GAT model trains the edge weights using the attention
mechanism. The nodal representations, xi, are updated in
each of the graph layers as shown below:

x′
i = αi,iWsxi +

∑
j∈N(i),j ̸=i

αi,jWixj (4)

In (4), the weight matrix, W, is separately expressed with
Ws and Wi that correspond to the self-loop elements and
other elements. The attention coefficient, αi,j is calculated
from:

αi,j = softmax(ei,j) =
eei,j∑

k∈Ni
eei,k

(5)

ei,j = a(Whi,Whj) = aT LeakyReLU(W · [hi||hj ]),
(6)

where a ∈ R2F ′
, W ∈ RF ′×F , and || denotes vector

concatenation. F and F
′

denote the number of features at
each node in the input and output of the graph attention layer,
respectively. h denotes a set of node features. (6) proposed
in [29] is the result of shifting aT outside the original
LeakyReLU(·) that was proposed in [28]. (6) enables the
algorithm to handle the attention mechanism dynamically.

D. Ordinal Encoder
The range of levels (referred to as labels in machine learning
terminology) in each health index can be described as an
ordinal variable, reflecting a natural ordering in system health
levels. For example, the difference between system health for
labels 4 and 5 is much smaller than that of levels 4 and 1.
To capture this inherent relationship, ordinal encoding, which
introduces inductive bias is introduced. This inductive bias
leverages the ordinal structure, guiding the model to interpret
smaller differences between adjacent labels as less significant
than differences between labels that are farther apart. This
structured encoding allows the model to better understand
and preserve the relative relationships between health states
during training, adding a “hint” about the hierarchy in health
index categories. To implement the ordinal encoder, we take
the output values from the model’s last fully-connected layer
—known as logits Li — and run it through Algorithm
1, which calculates the probability distribution over health
index label s.

By encoding labels in this ordinal manner (e.g., “low,”
“medium,” and “high” as 1, 2, and 3), we impose a structured
representation that reinforces the ordinal relationships inher-
ent in the data. This approach not only contributes to predic-
tion accuracy but also enhances the model’s understanding
of label relationships, particularly in scenarios where the
magnitude of difference between labels is meaningful.

Because the grid health index prediction task is formulated
as a classification problem, the cross-entropy loss function
is selected to compute gradients, optimizing the model’s
parameters to respect both accuracy and the ordinal bias
introduced by the encoder. During training, the neural net-
work learns by adjusting its weights and biases through
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Algorithm 1 Classification with Ordinal Encoder
for every epoch do

K logits Li are derived at the last layer
si = sigmoid(Li),∀1 ≤ i ≤ K
L′
i =

∑
j≤i log(sj) +

∑
i<j log(1− sj),∀1 ≤ i ≤ K

p′i =softmax(L′
i),∀1 ≤ i ≤ K

end for

TABLE 2. Labels Set for Grid Health Index

Class
Frequency Angle

bet. Buses 10-12
Angle

bet. Buses 10-49
Range (Hz)

# of contingency
Range (deg)

# of contingency
Range (deg)

# of contingency
Label

0
(59.975, ∞]

13217
(180, ∞]

285
(180, ∞]

357
Label

1
(59.95, 59.975]

2581
(90, 180]

174
(90, 180]

527
Label

2
(59.85, 59.95]

3309
(60, 90]

481
(65, 90]

1024
Label

3
(59.70, 59.85]

3402
(45, 60]

586
(55, 65]

811
Label

4
(-∞, 59.70]

2716
(35, 45]

659
(45, 55]

1124
Label

5 N/A (25, 35]
1162

(35, 45]
1291

Label
6 N/A (17, 25]

1982
(25, 35]

2024
Label

7 N/A (11, 17]
2580

(15, 25]
3062

Label
8 N/A (8, 11]

2082
(10, 15]

2832
Label

9 N/A (5, 8]
3121

(7, 10]
2496

Label
10 N/A (3, 5]

3497
(4, 7]
3506

Label
11 N/A (2, 3]

2341
(2, 4]
2992

Label
12 N/A (1, 2]

2883
[0, 2]
3179

Label
13 N/A [0, 1]

3392 N/A

backpropagation. The model calculates gradients of the loss
function with respect to each parameter using the chain
rule, allowing for the optimization of weights and biases via
gradient descent. This process minimizes the loss function by
iteratively updating the parameters, improving the model’s
ability to predict the grid health index, even in the presence
of class imbalance. However, while the ordinal encoder
generally improves performance, it is not always effective.
There are instances, as observed in Section V, where the
MLP achieves better results without the encoder, possibly
due to the model converging to a local minimum.

IV Numerical Study Setup
A. Augmented IEEE 118-bus Test System
The IEEE 118-bus system [30] is adopted as the base
testing environment. To make the system more realistic, step-
up/down transformers and additional units at power stations
are included [31]. These modifications expand the system to
encompass 264 buses and 325 branches.

Reference [31] recommends modeling multiple units at
selected power stations. Specifically, the number of genera-
tion units at bus 100 increases from one to two (see Table 3).

Considering power plant types, the rated capacity of a single
unit of the advanced combined cycle power plant powered
by natural gas is limited to a maximum of 200 MW. Fuel
types and the number of units at power stations are set based
on [31] and [32]. Run-of-river hydropower facilities’ units
have smaller capacity, each consisting of a single generator.
Thermal power stations, on the other hand, can host between
one and four units.

Based on insights from [30], [31], the following steps are
used to generate a wide range of grid operating conditions:

1) Loading Condition
Different loading scenarios are generated by adjusting the
overall system demand from 40% to 100% of the peak
demand, increasing in increments of 5%.

2) Power Station-level Dispatch
Advanced combined cycle power units powered by natural
gas are fuel efficient. Thus, their active power outputs are
fixed at over 90% for all units at the power station. When
the loading level lowers, e.g., below 50%, 3 out of 5
power stations reduce the number of connected units without
changing active power output. The run-of-river hydropower
station is treated as a constant power output unit regardless
of the loading level. The rest of the power stations, such
as the coal/gas-fired and hydropower, are treated as variable
active power units.

3) Unit-level Dispatch Scenario
Two unit-level dispatch scenarios are employed: even unit
dispatch, where all units at a power station have the same
active power output without unit disconnection, and uneven
unit dispatch, where one unit’s active power output is ad-
justed while others remain unchanged.

It is noted that on-load tap changers, shunt capaci-
tors/reactors, and the reactive power output from syn-
chronous generators and synchronous condensers are in-
dividually adjusted to satisfy the entire grid voltage level
constraints (nominal voltage ±5%) for a particular demand.

B. Dynamic Model of the Test System
1) Generator Model
The generator model used in this study is a round rotor
generator model with a quadratic saturation, known as
GENROU in the PSS/E. This is a two-axis model with a
saturation curve using an exponential function. The leveraged
time-domain simulation tool [33] expresses the saturation
curve with the broken line approximation instead. These data
points are provided in [31].

2) Generator Controller Model
a: Automatic Voltage Regulator (AVR)
The AVR model used in this paper, showcased in Fig. 3,
is based on the EXST1 model used in [31]. The terminal
voltage magnitude, VT , is the input, and the field voltage
magnitude, EF , is the output of this model. However, there
are notable differences between the representations in [31]
and this paper. In [31], certain elements, such as the washout
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TABLE 3. Generation Resource with Two Dispatch Scenarios

Bus
number

Fuel
type

Unit
capacity

# of connected units for demand level
Even dispatch Uneven dispatch

10 Coal 248 MW 2: [40%, 100%]
3: [90%, 100%]
2: [65%, 85%]
1: [40%, 60%]

12 AGCC 23.5 MW 4: [40%, 100%] 4: [40%, 100%]
25 Coal 215 MW 1: [40%, 100%] 1: [40%, 100%]

26 Coal 153 MW 2: [40%, 100%] 2: [65%, 100%]
1: [40%, 60%]

31 ROR 8.0 MW 1: [40%, 100%] 1: [40%, 100%]

46 Gas 10.9 MW 2: [40%, 100%] 2: [65%, 100%]
1: [40%, 60%]

49 AGCC 150 MW 1: [40%, 100%] 1: [40%, 100%]

54 Coal 40 MW 3: [40%, 100%] 2: [50%, 100%]
1: [40%, 45%]

59 AGCC 115 MW 2: [55%, 100%]
1: [40%, 50%]

2: [50%, 100%]
1: [40%, 45%]

61 AGCC 119 MW 2: [55%, 100%]
1: [40%, 50%]

2: [55%, 100%]
1: [40%, 50%]

65 Coal 220 MW 2: [40%, 100%] 2: [65%, 100%]
1: [40%, 60%]

66 Coal 238 MW 2: [40%, 100%] 2: [65%, 100%]
1: [40%, 60%]

69 Hydro 115 MW 1: [40%, 100%] 1: [40%, 100%]

80 Coal 162 MW 2: [40%, 100%] 2: [65%, 100%]
1: [40%, 60%]

87 ROR 12.5 MW 1: [40%, 100%] 1: [40%, 100%]

89 Coal 238 MW 3: [40%, 100%]
3: [85%, 100%]
2: [60%, 80%]
1: [40%, 55%]

100-1 AGCC 100 MW 1: [40%, 100%] 1: [40%, 100%]

100-2 AGCC 119 MW 2: [55%, 100%]
1: [40%, 50%]

2: [55%, 100%]
1: [40%, 50%]

103 Hydro 75 MW 1: [40%, 100%] 1: [40%, 100%]
111 Gas 67 MW 1: [40%, 100%] 1: [40%, 100%]
116 Gas 217 MW 1: [40%, 100%] 1: [40%, 100%]

AGCC: Advanced Gas Combined Cycle, ROR: Run-of-River.

element for high-frequency filtering, are excluded, resulting
in the control diagram shown in Fig. 3. Additionally, [31]
assumed zero delay for terminal voltage magnitude, VT

detection, which is refined in the model by assigning a
small time constant of 0.01 seconds. Therefore, while Fig.
3 resembles the EXST1 model, it includes modifications
to better reflect practical considerations compared to the
representation in [31].
b: Turbine-governor Controller Model
The primary frequency control model is derived from an
IEEE standard model known as IEESGO in the PSS/E, as
shown in Fig. 3. This model represents a typical thermal
power plant governor. Although its parameters are based on
[21], the upper limit, converted from MVA base value to MW
base (from 0.9 pu to 1.0588 pu to include a 5.88% overload
margin reflecting turbine governor models), is calculated
as 0.9/0.85, with 0.85 being the rated power factor of
synchronous generators and synchronous condensers based
on design data from the early 1970s. Also, the lower limit
is set at 0.0, ignoring the in-house loss and mechanical loss.

3) Grid Protection Model
a: Underfrequency Protection
The grid protection for frequency stability generally detects
the frequency drop using underfrequency relays with or
without timer or rate-of-change-of-frequency relays. The
developed dynamic model employs the underfrequency re-

FIGURE 3. Generator controller: automatic voltage regulator model (top)
and turbine-governor model (bottom).

FIGURE 4. Underfrequency relay logic.

lay without the timer as the grid protection for frequency
stability. This decision prioritizes simplicity in the modeling
process, as determining timer settings requires a compre-
hensive study of various generation dispatching scenarios.
Relay setting values are generally determined according to
the following principles:

• The frequency nadir is not lower than the operating
frequency (lower) limit of synchronous generators.

• The total load shedding amount is approximately equal
to the assumed capacity of the largest single generator
that could trip.

• The post-fault frequency should not exceed the steady-
state frequency.

Based on the above considerations, referring to a publicly
available source [34], the underfrequency protection has been
modeled as shown in Fig. 4. The underfrequency relays
are designed to remain inactive when the voltage level falls
below 0.4 pu.

FIGURE 5. Out-of-step relay characteristics for transmission lines and
generators.
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b: Out-of-step Relay
The grid protection for transient stability aims to prevent
cascading failures by disconnecting out-of-step (OOS) syn-
chronous generators or tie-lines. OOS relays are designed
based on impedance or voltage angle difference [35], though
they are not always placed on all transmission lines in
many countries. The former relay is used for unit protection,
while the latter relay is used for grid/line protection. For
simplicity, the voltage angle difference is used for both
lines and generators (see Fig. 5). This decision emphasizes
simplicity in the modeling process, given that determining
impedance settings necessitates thorough consideration of
diverse generation dispatch scenarios typically handled by
grid operators. As time-domain simulation tools calculate
the internal induced voltage, the angle difference between
terminal voltage and internal induced voltage is used to
detect OOS generators.
c: Load Model
Load characteristics are represented using the exponential
load model with the voltage and frequency dependency as
shown in (7). The coefficients of load frequency character-
istics are set based on CIGRE working group report [36].

The load self-disconnection characteristics are equivalent
to that of the under-voltage load-shedding system at the
system level, expressed as (8) [36]. The starting and saturated
voltage levels are set as 0.8 p.u. and 0.4 p.u., respectively.
The amount of self-disconnected loads is assumed to increase
linearly with the upper limit of 25% of the initial load.
It is noted that this relay is not applied to reactive power
compensators. P = (P0 − Pdrop)

(
V
V0

) (
1 + 3.33

100 ∆f
)

Q = (Q0 −Qdrop)
(

V
V0

)2 (
1 + 0

100∆f
) (7)

Pdrop, Qdrop =

 0 (Vmin > 0.8)
−1.6Vmin + 0.8 (0.8 ≥ Vmin ≥ 0.4)
0.25 (0.4 > Vmin)

(8)

where Pdrop and Qdrop denote the amount of load self-
disconnection, and Vmin denotes the lowest load bus voltage.

C. N-1 Contingency List
Contingency analysis is generally performed by discon-
necting one or more power components from the grid.
The single power component disconnection is commonly
called N-1 contingency. When two power components are
disconnected, it is referred to as N-2 contingency. As this
study is an initial attempt to apply GCN/GAT for grid
health index prediction, the scope of the contingency analysis
is limited to N-1 contingencies. N-1 contingencies in the
IEEE 118-bus system are listed by the power equipment,
as shown in Table 4 and Fig. 6. All power flow snapshots,
outputs (i.e., grid health indices), and the employed model
parameters for the generator controller models and grid
protection models are available in the GitHub repository:
github.com/KojiGitCode/OAJPE.

TABLE 4. Number of N-1 Contingency
Type Line Unit Transformer

Transmission line 163 N/A N/A

Synchronous generator (SG) N/A 19 N/A
Synchronous condenser (SC) N/A 36 N/A

Step-up transformer for SG N/A N/A 19
Step-up transformer for SC N/A N/A 36
Tie transformer N/A N/A 9
Step-down transformer for load N/A N/A 91

Number of fault duration pattern 3* N/A 3*

Total ** 489 55 465
* Three fault durations are set to 50, 200, and 367 ms.
** Calculation: Numbers of same contingency types times 3 fault durations

V Grid Health Index Prediction Performance
As shown in Table 2, the number of unstable cases for
angular stability ranges from 285 to 357, and if a 90-
degree threshold for steady-state angle stability is considered,
the number increases to between 459 and 884. Given the
total number of cases (25,225), unstable cases constitute a
relatively small fraction, resulting in a class imbalance.

To ensure a fair evaluation of the model’s performance,
especially for the minority unstable cases, the F1-score
was used instead of accuracy. The F1-score balances both
precision (correctly predicted unstable cases) and recall
(actual unstable cases detected), providing a more reliable
assessment of the model’s ability to detect instability despite
the class imbalance.

For this study, 60% of the dataset is assigned for the
training dataset, then around 10% of the dataset is allocated
for the validation dataset, and the remaining 30% of the
dataset is leveraged for the testing dataset.

The generator pairs selected for the angle health index
(buses 10 and 12, and buses 10 and 49) were chosen based
on their largest pre-contingency angle differences among all
generator pairs in the test system. These pairs are critical in-
dicators of transient stability, as they tend to show significant
angle deviations following a disturbance.

A. Prediction Accuracy with Full Grid Sensor Coverage
1) Prediction Performance of GCN and GAT Models
The grid health indices, specifically the frequency health
index and angle health index, are predicted by the proposed
GCN and GAT models. MLP models are selected as the
baseline model. The validation losses and testing accuracies
obtained from the MLP, GCN, and GAT models are shown
in Table 5. Note that the hyperparameters, e.g., learning rate
and the number of hidden layers and neurons, were fine-
tuned and chosen based on validation dataset performance.
An extension of the Adam optimizer, named Adamax, was
employed as the optimizer, which provides better perfor-
mance in terms of minimizing model error.

Table 5 shows that GNN models, such as GCN and
GAT, improve grid health index prediction accuracy by
more than 10% compared to the baseline model (i.e., MLP
models). When comparing the performance between GCN
and GAT models, it is observed that both models demonstrate
nearly the same prediction accuracy for the frequency health
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FIGURE 6. IEEE 118-Bus system single-line diagram with annotations of key power system components.

Freq

FIGURE 7. Accuracy for frequency health index prediction for 6 partial
PMU coverage scenarios with MLP/GCN/GAT model, considering
measurement error levels ranging from 0 to 10%.

Ang

FIGURE 8. F1-score for angle health index prediction (Buses 10-49) for 6
partial PMU coverage scenarios with MLP/GCN/GAT model, considering
measurement error levels ranging from 0 to 10%.

index prediction. However, GAT models exhibit significantly
higher accuracy than GCN models for the angle health index.
These differences may be attributed to the GAT model’s
superior ability to handle edge features, which are more
crucial for angular stability than for frequency stability.

2) Impact of Ordinal Encoder on Prediction Accuracy
The upper three rows of Table 5 show that the ordinal en-
coder does not always contribute to an increase in frequency
health prediction accuracy for both GCN and GAT models.
On the other hand, the lower six rows of Table 5 shows
that the ordinal encoder contributes to an increase in angle
health prediction accuracy for both GCN and GAT models,
by 2.3∼3.2% and 0.1∼2.7%, respectively. While the latter
range appears smaller, the rate of accuracy improvement for

the angle health prediction relative to the baseline model is
higher in GAT models compared to GCN models.

In summary, both the attention mechanism and the ordinal
encoder enable GNNs to predict the grid health indices more
accurately.

3) Assessing Real-Time Applicability of GAT Models in Grid
Health Index Prediction

The GAT models are tested on a system running Ubuntu,
equipped with an Intel i7-10700F CPU, 32 GB of RAM, and
an NVIDIA GeForce RTX 4090 GPU with 24 GB of VRAM.
With the system mentioned above, the training time is a
few hours. However, the calculation times for the frequency
and angle health indices are 1.22–1.27 ms and 2.89–2.98
ms, respectively. The computation times are for a single
contingency and calculated based on 100 attempts across all
testing datasets, including data loading, model initialization,
and health index prediction, but excluding communication
delays involved in acquiring measurement data.

B. Partial PMU Coverage
Six scenarios with different levels of Phasor Measurement
Unit (PMU) coverage in the power system were analyzed, as
outlined in Table 6. Each scenario represents varying PMU
coverage for distinct power equipment types (see second
column in Table 6). This study enables system operators
and planners to identify critical grid sensor locations for
predicting the frequency and angle health index.

1) Pseudo PMU Measurement Setup
In the absence of grid sensors at specific bus locations,
GCN and GAT models utilize pseudo measurements (approx-
imated measurements that mimic the output of actual PMUs)
derived from the state estimator. Notably, state estimator
outputs, updated in intervals of 0.5∼5 minutes, had a much
lower sampling frequency compared to the standard PMU
measurement with a reporting rate of 33.33 ms that has
been employed in the real world, e.g., WECC in the U.S.
Consequently, state estimator-derived pseudo measurements
are inherently noisy and delayed measurements. To emulate
this characteristic in experiments, a Gaussian noise with a
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TABLE 5. Frequency/Angle Health Index Prediction Performance (Buses 10-12 and 10-49)

Grid
health
index

Machine
learning
model

Validation
loss

(×10−3)

Testing accuracy
w/wo ordinal

encoder

Testing F1-score
w/wo ordinal

encoder

Number
of node
neurons

Number
of edge
neurons

Number
of hidden

layers

Learning
rate of
Adam

Number
of heads

MLP 1.338 / 1.384 0.8192 / 0.8414 0.7279 / 0.7139 64 N/A 4 0.0001 N/A
Frequency GCN 0.442 / 0.477 0.9302 / 0.9370 0.8841 / 0.9010 64 32 5 0.0001 N/A

GAT 0.476 / 0.536 0.9392 / 0.9394 0.9001 / 0.8999 64 32 4 0.0001 4

Angle Index MLP 3.811 / 3.798 0.5151 / 0.5103 0.4670 / 0.4596 128 N/A 2 0.001 N/A
between GCN 1.316 / 1.834 0.8810 / 0.8488 0.8888 / 0.8620 192 32 2 0.001 N/A

buses 10-12 GAT 1.228 / 1.571 0.8992 / 0.8980 0.9123 / 0.9023 64 32 3 0.0001 2

Angle Index MLP 3.712 / 3.880 0.5365 / 0.5119 0.5529 / 0.4966 64 N/A 5 0.001 N/A
between GCN 1.640 / 1.714 0.9056 / 0.8821 0.9009 / 0.8806 192 32 4 0.001 N/A

buses 10-49 GAT 0.836 / 1.370 0.9389 / 0.9115 0.9334 / 0.8982 64 32 4 0.0001 2

FIGURE 9. F1-score for frequency health index prediction for 6 partial PMU coverage scenarios with GCN and GAT models, using 3 imputation methods.

FIGURE 10. F1-score for angle health index prediction (top subgraph: angle difference between Buses 10-12, bottom subgraph: Buses 10-49) for 6
partial PMU coverage scenarios with GCN and GAT models, using 3 imputation methods.

standard deviation ranging from 1/30 to 1/3 is introduced
into dynamic simulation results. It should be noted that a
standard deviation of 1/30 is assumed to correspond to a
±1% measurement error. In addition, two naive missing value
replacement methods, i.e., zero imputation method and peak
demand value replacement method, are also examined.

2) Analysis of Grid Health Prediction Performance Across
Different Pseudo PMU Measurement Error Levels

The grid health index prediction performance with pseudo
grid sensor measurement errors from 0 to 10% is shown in
Figs. 7 and 8. The F1-scores were calculated as a perfor-
mance indicator using the Torchmetrics library in PyTorch,
which computes it as the harmonic mean of precision and
recall. The F1-scores in Figs. 7 and 8, gradually decline
as the measurement error increases. However, the rate of
decrease is much greater when using GAT models. The
prediction performance of GCN models surpasses that of
GAT models for certain partial PMU coverage scenarios
when the measurement error exceeds 7%. This observation in
prediction performance seems to suggest a trade-off between
robustness and accuracy for a prediction model.

TABLE 6. Partial PMU Coverage Scenario in the IEEE 118-Bus System

Index of buses with
no PMU (abbrev.) Power equipment Remark

2 (SW) Switching station —
9 (TS) Tie-transformer Secondary-side only

18 (TT) Tie-transformer Both sides
19 (SG) Synchronous generator —
35 (SC) Synchronous condenser —
53 (LD) Step-down transformer Load bus with no unit

3) Enhancing Grid Health Prediction Performance under
Partial PMU Coverage with Data Imputation Techniques

The performance of grid health index prediction with three
different missing sensor data imputation techniques is shown
in Figs. 9 and 10. The three data imputation techniques
evaluated are zero value imputation, peak value replacement,
and pseudo grid sensor measurement with 10% error. It
can be seen from the figures that under most partial PMU
coverage scenarios, both the zero imputation method and
peak value replacement method perform worse than pseudo-
PMU measurements with 10% error. The zero imputation
method could significantly deteriorate the grid health pre-
diction performance when a large area lacks PMUs or when
critical substations miss PMUs. Finally, the results show

10 VOLUME ,



that GCN models demonstrate greater tolerance to limited
PMU observability compared to GAT models when assessing
frequency stability. In contrast, GCN models exhibit lower
tolerance to limited PMU observability compared to GAT
models when assessing angular stability. The last finding
reveals a potential weakness in the performance of the
GAT/GCN model for grid health prediction.

4) Critical Location for Grid Sensor
The numerical study results in figures 7 and 8 provide three
insights for grid sensor placement for grid health index
prediction. First, we observe that grid sensors should be
consistently present at substations with synchronous gener-
ators when monitoring the frequency stability-related health
index. Second, grid sensors must be consistently deployed at
substations with synchronous condensers when monitoring
the angular stability-related health index. Third, grid sensors
should be reliably deployed at substations with step-down
transformers connected to load feeders when monitoring
angular stability-related health. Given that many step-down
transformers are co-located with step-up transformers and
transmission lines within the same substation, a single PMU
with multiple measurement channels can aggregate data
across interconnected components. Additionally, by placing
the grid sensor on the secondary side of each step-down
transformer, it can monitor and aggregate data from mul-
tiple load feeders connected to the same transformer. This
approach reduces the need for dedicated PMUs at each step-
down transformer, streamlining monitoring infrastructure
while enhancing data coverage. The second finding implicitly
reveals the importance of both active power and reactive
power in assessing angular stability. In summary, we must
consider the type of power equipment in a substation when
identifying ideal locations of grid sensors for monitoring grid
health indices.

VI Conclusion
This paper introduces a physics-informed graph learning
model for real-time assessment of grid health index, focusing
on frequency and angular stability studies. Comprehensive
numerical study results reveal that the proposed graph con-
volutional network (GCN) and graph attention (GAT) models
significantly outperform the multi-layer perception model in
terms of prediction accuracy by 12∼40% when considering
full PMU coverage. The study results also show that the GAT
model boosted the angle health index prediction accuracy
by 1 ∼ 3% compared to the GCN model. Both models
achieve similar accuracy for frequency health index under
full PMU observability. The inclusion of an ordinal encoder
improves accuracy between 0.1% and 2.7% for GAT models
for predicting angle and frequency health indices. However,
the ordinal encoder only improves accuracy for GCN models
(2.3∼3.2%) when predicting the angle health index.

The numerical study results highlight the importance of
selecting appropriate models and sensor data imputation
methods for grid health index prediction under partial PMU
coverage scenarios. In practice, one should avoid utilizing

the zero imputation and peak value replacement methods.
Furthermore, GCN models not only often yield better per-
formance for frequency stability analysis but also exhibit
greater resilience to limited PMU observability compared
to GAT models. In contrast, GAT models achieve superior
performance for angular stability analysis with partial PMU
coverage, demonstrating higher tolerance to limited PMU
observability than GCN models.

The numerical studies of this paper show that the place-
ment of grid sensors at substations with critical power equip-
ment is crucial for improving grid health index prediction
algorithms. Specifically, strategically placing sensors at these
critical locations enhances the data quality used by machine
learning models, improving their accuracy in predicting grid
health. It is important to note that the criticality of power
equipment varies depending on the type of stability analysis
being conducted, and understanding these variations enables
machine learning models to identify and prioritize the most
important features for accurate prediction. These observa-
tions can guide system operation engineers in developing
more effective and efficient grid health prediction algorithms,
tailored to real-world power grid conditions.

Future work will first focus on incorporating a wider range
of grid configurations, including alternative topologies and
off-peak maintenance scenarios, into the training dataset.
This approach will enhance the model’s ability to generalize
to rare configurations that may arise in real-world power
systems. Additionally, real-world demonstrations with utility
and network operators will be conducted to implement the
proposed graph neural network-based real-time contingency
analysis tool for monitoring grid health conditions.
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timal phasor measurement unit placement for numerical observability
in the presence of conventional measurements using semidefinite
programming,” IET Gener. Transm. Distrib., vol. 9, no. 15, 2015.

[22] B. Gou, “Generalized integer linear programming formulation for
optimal PMU placement,” IEEE Trans. Power Syst., vol. 23, no. 3,
2008.

[23] C. Mishra, K. D. Jones, A. Pal, and V. A. Centeno, “Binary particle
swarm optimisation-based optimal substation coverage algorithm for
phasor measurement unit installations in practical systems,” IET Gener.
Transm. Distrib., vol. 10, no. 2, 2016.

[24] N. Fan and J.-P. Watson, “On integer programming models for the
multi-channel PMU placement problem and their solution,” Energy
Syst., vol. 6, 2015.

[25] A. Pal, G. A. Sanchez-Ayala, V. A. Centeno, and J. S. Thorp, “A PMU
placement scheme ensuring real-time monitoring of critical buses of
the network,” IEEE Trans. Power Del., vol. 29, no. 2, 2014.

[26] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in Proc. of 5th Int. Conf. on Learning
Representations (ICLR), Apr. 2017.

[27] M. Simonovsky and N. Komodakis, “Dynamic edge-conditioned filters
in convolutional neural networks on graphs,” in Proc. 2017 IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2017.

[28] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
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