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Abstract—The increasing frequency of extreme weather events,
coupled with the rising penetration of renewable generation,
poses significant challenges to forecasting system load, renewable
output, electricity prices, and managing operational risk for
system operators and market participants. This paper presents
an integrated framework that combines machine learning–based
probabilistic weather forecasts with load and renewable gen-
eration models, alongside a high-resolution electricity market
simulator, to produce day-ahead forecasts of system conditions in
a computationally efficient manner. A case study on the 14,606-
bus WECC system during a heat wave demonstrates substantial
deviations across ensemble members, including peak temperature
variability of ±6◦F , wind generation differences of up to 4GW,
load fluctuations of up to 3GW, and electricity price deviations
exceeding 70%. These results underscore the magnitude of
uncertainty in power system operations under extreme weather
conditions and highlight the value of the proposed framework in
supporting more robust, risk-aware decision-making.

Index Terms—Extreme weather event, heat wave, machine
learning, power system, probabilistic forecast.

I. INTRODUCTION

The accelerating impacts of extreme events are reshaping
the operational and planning landscape of modern power grids.
A more volatile weather system, coupled with increasingly
unpredictable electricity demand, presents new challenges for
maintaining grid reliability and efficiency [1]. At the same
time, the global energy transition has introduced a growing
reliance on weather-dependent renewable energy sources, such
as solar and wind, which are inherently challenging to forecast
with high accuracy [2], [3]. The uncertainty surrounding
weather patterns amplifies unpredictability on both the supply
and demand sides of the electricity system heightening the
risk of operational stress, price volatility, and large-scale
system disruptions. Moreover, it adds complexity for market
participants managing portfolios of generation assets, load
obligations, and financial contracts, complicating decision-
making and risk management in the electricity market. There
is an increasing need for computationally efficient methods
to generate probabilistic forecasts of coincident weather, load,
renewable generation, and electricity prices in order to sup-

port system operators and market participants during extreme
weather events.

A large body of research has been dedicated to producing
probabilistic load and renewable generation forecasts [4] in the
power systems domain. In general the probabilistic forecasts
algorithms consists of two stages. The first stage involves
producing point or ensemble forecasts [5] of meteorological
variables by using numerical weather prediction (NWP) mod-
els [6] or statistical methods [7]. The second stage feeds the
forecasts of the meteorological variables into parametric or
nonparametric [8] methods to produce probabilistic load and
renewable generation forecasts. Most of the existing literature
focuses on the second stage by deriving probabilistic load
and renewable generation forecasts given ensemble weather
forecasts from NWP models using quantile regression [9] and
its derivatives, bootstrap [10], Dirichlet process mixture model
(DPMM) [8], and deep neural networks [11].

Despite their critical role in load and renewable generation
forecasting, the initial stage of generating probabilistic weather
forecasts—particularly for temperature, humidity, wind speed,
and solar irradiance—has received comparatively limited at-
tention in the power system field. The classical approach
relies on ensemble weather forecasting [12], which uses NWP
models based on the solution of large-scale partial differen-
tial equations representing the transitions between discretized
grids of atmospheric states. While effective, NWP is com-
putationally intensive, making it costly and time-consuming
to produce a large ensemble of forecasts. In recent years,
however, advanced machine learning techniques—such as
3D neural networks [13], graph neural networks [14], and
Fourier neural operators [15]—have emerged as promising
alternatives. These models offer improved short-term forecast
accuracy while significantly reducing computational overhead.

This paper addresses a critical gap by developing an in-
tegrated framework that combines machine learning–based
probabilistic weather forecasting, probabilistic load and re-
newable energy forecasting models, and an electricity mar-
ket simulation engine to produce high-resolution, short-term
forecasts of load, renewable output, and electricity prices in



a computationally efficient manner. The resulting forecasts
exhibit realistic, high-fidelity spatio-temporal patterns, offering
valuable insights for system operators to enhance grid reliabil-
ity and for market participants to better manage financial risk.
To demonstrate the practical applicability of the framework,
we conduct a real-world case study of the Western Electricity
Coordinating Council (WECC) system during an extreme heat
wave event. This analysis captures the probabilistic envelope
of weather conditions under realistic but stressed scenarios,
revealing critical spatio-temporal dynamics in load, renewable
generation, and market price behavior.

The remainder of the paper is organized as follows. Section
II describes the technical methodology for generating proba-
bilistic forecasts. Section III presents the numerical case study
conducted on the WECC system. Section IV concludes the
paper with a summary of findings.

II. TECHNICAL METHODS

The overall framework of the proposed probabilistic
weather, demand, renewable energy, and electricity price fore-
casts is developed by integrating both custom and pre-built
machine learning and power system models. Fig. 1 shows a
high-level overview of the information flow between modules.

Fig. 1. High-level information flow of the proposed framework.

A. AI-based Short Term Weather Forecasting Model

This module leverages the pre-built Pangu-Weather model,
a state-of-the-art medium-range weather forecasting model
with 256 million parameters, trained on 43 years of hourly
global weather data. Pangu-Weather produces forecasts at
fixed time intervals down to one hour and with a spatial
resolution of 0.25◦ × 0.25◦, making it well-suited for the
objectives of this study. This model is selected for its superior
accuracy over traditional NWP methods and other AI-based
approaches, particularly during extreme weather events [13].
Its performance advantage stems primarily from two key
innovations: a 3D Earth-specific Transformer architecture and
a hierarchical temporal aggregation strategy, which involves
training a sequence of models for progressively longer lead
times (1-hour, 3-hour, 6-hour, and 24-hour forecasts).

The input data to Pangu-Weather consists of a single
hour snapshot of global weather typically from the European
Center for Medium-Range Weather Forecasting (ECMWF). A
subset of variables from ECMWF datasets is used, namely
temperature, wind speed, and humidity, and at a range of
atmospheric location defined by atmospheric pressure. Pangu-
Weather outputs include the same variable set as the input to
the model on the same global grid but inferred one time step
forward.

B. Solar Irradiance Estimation Model

For this work, accurate forecasting of solar output is nec-
essary. To accomplish this, more variables are necessary since
the solar irradiance parameters – global horizontal irradiance
(GHI), direct normal irradiance (DNI), and diffuse horizontal
irradiance (DHI) – are not forecast by Pangu-Weather. One
approach to resolve this problem is to base a forecast on the
clear-sky irradiance. This is easily calculated using the pvlib
Python package [16] given location and time of day. However,
this method only finds a theoretical natural maximum and fails
to account for atmospheric conditions that may decrease solar
irradiance such as cloud cover. To account for atmospheric
conditions, the variables forecast by Pangu-Weather can be
used to forecast the difference between the clear-sky irradiance
and the measured irradiance.

To accomplish this, an eight layer feedforward neural net-
work with ReLU activation was trained to accurately forecast
the solar irradiance parameters at any given location. This
model takes in previous day and hours’ weather and solar
irradiance, future weather forecast information, latitude, lon-
gitude, sine-cosine time encoding, and clear-sky irradiance in-
formation. Training data was sourced from the ECMWF ERA5
dataset which includes the solar irradiance parameters surface
short-wave radiation downwards (SSRD) and surface direct
short-wave radiation (FDIR) [17]. These variables are directly
related to GHI, DHI, and DNI. Once trained, this model
performs at less than 5% mean absolute percent error (MAPE)
on unseen testing data. Since there is a known relationship
between GHI, DNI, and DHI, only two of the parameters need
to be estimated to have a full understanding of the irradiance.
This relationship is given by GHI = DNI × cos (θz) + DHI,
where θz is the solar zenith angle.

C. Renewable Energy Performance Simulator

To accurately simulate the performance of renewable energy
sources, physics-based models representing solar and wind
power plants are employed to compute their respective power
outputs. The ADR solar cell model [18] with the default panel
parameters from pvlib is used to produce power outputs of
solar farms. The windpowerlib Python package [19] is used to
estimate the power output of wind farms by interpolating along
standardized wind speed-based power curves generalized for
various common turbine types. Together with the solar model,
these tools are employed to estimate the maximum potential
power output of renewable energy resources at any given hour.



Estimating renewable energy outputs from forecast weather
data requires knowledge of the geographic locations of gener-
ation assets. However, the network model used in this study
does not include geo-coordinates for individual generators.
To overcome this limitation, a representative subset of solar
and wind generators was selected to approximate the spatial
distribution of the broader renewable fleet. The geographic
locations of these generators were identified using publicly
available data sources such as the EPA’s eGRID dataset. This
subset represents over 30% of the total installed renewable
generation capacity in the system. The average hourly capacity
factor of the identified generators is then used as a proxy to
estimate the output of the remaining, unlocated generators.

D. Demand Forecasting Model

To model the complex relationship between weather vari-
ables and electric load, we trained a convolutional neural
network (CNN) that captures spatio-temporal dependencies
between gridded weather data and zonal electricity demand.
CNNs are well-suited for this task because they can ex-
tract local and hierarchical features from structured spatial
data, enabling the model to represent complex, nonlinear
relationships across weather fields that are difficult to model
explicitly using traditional techniques. This model inputs a
121×121×384 tensor representing gridded weather variables
inferred by Pangu-Weather. The inferences are bounded by
25◦ N - 55◦ N latitude and 100◦ W - 130◦ W longitude. This
tensor includes historical and forecast weather over a 48-hour
window, or the past and future inferred 24 hours.

The CNN architecture consists of four convolutional blocks,
each block comprised of two convolutional layers with kernel
size 3 and stride and padding of 1, followed by 2×2 max pool-
ing. The outputs of the convolutional blocks are then passed to
a five-layer fully connected head with ReLU activation. At the
start of this set of dense layers, non-spatial features such as
the previous 24 hours’ zonal demand and sinusoidal temporal
encoding are concatenated. These encodings allow the model
to be agnostic to a starting time so it can forecast 24-hour
ahead from any point in the daily cycle.

The model outputs a full 24-hour day-ahead demand fore-
cast for the load areas represented by the CAISO region. Once
trained, this model performs at under 5% MAPE for all load
areas on unseen testing data for a full 24-hour cycles.

E. Market Clearing Module

The probabilistic weather-informed demand and renewable
generation potential forecasts are fed into the market clear-
ing module, which includes two models: unit commitment
(UC) and economic dispatch (ED). The UC and ED problem
formulations follow [20] and [21] to minimize the system
operation costs subject to a set of technical and system-level
constraints such as nodal power balance, generator maximum
and minimum limits, hourly ramp rate limits, and line flow
limits. The outputs of the UC problem include the generator
on/off schedules, which are fed into the ED problem. The
outputs of the ED model includes the final generator dispatches

and locational marginal prices (LMPs). The UC problem is
implemented in YALMIP [22] and solved using Gurobi [23].
The ED problem is solved using MATPOWER’s optimal
power flow tools [24].

III. NUMERICAL STUDY

A. Data Sources

The case study examines the heat wave that affected the
western United States on September 5, 2024. On this day, a
demand response event was triggered in the CAISO region,
coinciding with elevated temperatures across the WECC area.

This work is built on historical hourly data from multiple
sources, including the California Independent System Operator
(CAISO)’s Open Access Same-Time Information System (OA-
SIS) demand dataset [25], ECMWF’s ERA5 reanalysis [17]
and Meteorological Archival and Retrieval System (MARS)
perturbed forecast weather datasets [26]. Additionally, a mod-
ified version of the WECC 2034 production cost model is em-
ployed to emulate system and market operations on September
5, 2024 [27].

For the machine learning modules trained on historical data,
including the solar irradiance and demand forecasting models,
the period from 2017 to 2023 was used ensure accuracy and
relevance to the simulated operating conditions.

1) ECMWF: This study utilizes the ECMWF ERA5 re-
analysis and the MARS Perturbed Forecast datasets to obtain
high-resolution, physically consistent weather data. ERA5 is
widely used for historical weather modeling due to its global
coverage, high spatial and temporal resolution, and robust data
assimilation framework. In our modeling framework, ERA5
data is employed to train zonal demand and solar irradiance
forecasting models, incorporating meteorological variables
such as surface and atmospheric temperatures, humidity, wind
speed, and solar irradiance.

For forward simulations, we utilize the MARS perturbed
forecast dataset. These ensemble forecasts enable the simula-
tion of power system operations under a range of plausible
weather scenarios, facilitating the construction of uncertainty
envelopes for key system and market variables such as demand
and locational marginal prices (LMPs). This ensemble-based
approach captures the inherent probabilistic nature of weather
forecasts and quantifies their downstream impacts on power
system performance.

2) CAISO: The zonal demand forecasting model is trained
using publicly available hourly demand data from CAISO
OASIS, covering various load zones. As hourly historical
zonal demand data for the full WECC region is not publicly
available, we extrapolate CAISO-based forecasts to the 43-
zone WECC model using inverse distance weighting (IDW)
based on estimated population-weighted centroids. To main-
tain consistency with zonal demand magnitudes, each aggre-
gated demand is normalized to the base load defined in the
WECC model and then scaled accordingly. This method lever-
ages spatial correlation in weather-sensitive demand patterns
to approximate zonal load behavior beyond CAISO. While it
introduces some simplifications, the approach offers a practical



and scalable solution for integrating high-resolution forecasts
into large-scale power grid simulations.

3) WECC: This study employs the WECC 2034 production
cost model as the foundation for power system simulations.
To better reflect operational conditions on September 5, 2024,
and to reduce computational complexity, several model adjust-
ments were made. First, the network was pruned to retain only
buses with a base voltage of 69 kV or higher; demand from
lower-voltage buses was aggregated to their corresponding
high-voltage substations. Second, thermal line flow constraints
were enforced only for transmission branches rated at or
above 110 kV. Additionally, to maintain temporal consistency
with the study date, only generators with commissioning
dates prior to September 5, 2024, were considered operational
and dispatchable. Following these modifications, the resulting
system comprises 14,606 buses and 4,445 generators.

B. Numerical Results

1) Probabilistic Forecasts for Weather: As shown in Fig. 2,
peak temperatures across a substantial portion of the WECC
region fall within the 90◦F to 110◦F range. Leveraging ensem-
ble forecasting allows us to assess the spatial and temporal
uncertainty of temperature throughout the region. While the
majority of absolute temperature deviations across ensemble
members remain within ±3◦F , certain areas exhibit variations
in peak temperatures of up to ±6◦F during periods of peak
load, as illustrated in Fig. 3.

This AI-based method enables rapid ensemble forecasting.
While NWP models may require several hours to generate 24-
hour forecast trajectories, this method produces forecasts for
each ensemble member in under 2 minutes, enabling compu-
tationally efficient generation of full ensemble trajectories.

Fig. 2. Surface temperature at 5pm PST

2) Probabilistic Forecasts for Renewable Generation: Us-
ing ensemble weather forecasts, Fig. 4 highlights the variabil-
ity and forecasting challenges associated with wind power.
The figure shows the total wind generation potential across
the WECC region over the course of the day for multiple
ensemble members. A notable inverse relationship emerges
between wind power availability and system load: ensemble

Fig. 3. Surface temperature deviation at 5pm PST

members with the lowest peak loads exhibit the highest peak
wind generation potential, while those with higher demand
show lower wind generation potential. This underscores the
importance of incorporating weather-driven uncertainty into
operational planning on heat wave days.

Fig. 4. Ensemble system level wind generation potential forecasts

3) Probabilistic Forecasts for Loads: Fig. 5 presents the
24-hour day-ahead WECC system load and net-load profiles
across ensemble members. Solid lines represent the total
system load, while dashed lines indicate the net load, defined
as total load minus solar and wind generation. At the time
of peak demand, the ensemble forecasts reveal a spread of
nearly 3 GW in total system load, highlighting the significant
uncertainty that system operators must account for in day-
ahead operations on heat wave days.

4) Uncertainty in Load Area LMPs: Fig. 6 shows the
percentage variation in LMPs relative to their ensemble means,
disaggregated by load area. The results reveal substantial
heterogeneity in LMP uncertainty. While some load areas
exhibit relatively low variability—less than 20% in certain
regions—others, such as the SPPC area, show significantly
higher uncertainty, with average LMPs fluctuating by as much
as 70% across ensemble members. This spatial disparity



Fig. 5. Ensemble load and net load profiles on the heat wave day

underscores the importance of accounting for location-specific
risk in market and system operations.

Fig. 6. Load area LMP % variation across ensemble members at 5PM PST

IV. CONCLUSION

This work presents a comprehensive framework for quanti-
fying variability and uncertainty in power system load, renew-
able generation, and market prices under extreme weather con-
ditions. By integrating AI-based ensemble weather forecasts
with machine learning models for solar irradiance and zonal
demand, as well as physics-based models for solar and wind
generation, we capture the spatio-temporal uncertainty inher-
ent to grid operations. Leveraging a modified WECC-scale
transmission network coupled with a market-clearing model,
we simulate system and market performance across ensemble
members to assess the spatial distribution of LMP uncertainty.
The results underscore the critical role of uncertainty-aware
forecasting in supporting more resilient and informed power
system operations during extreme events.
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