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Physics-informed Graph Neural Networks for
Collaborative Dynamic Reconfiguration and Voltage
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Abstract—Network reconfiguration has long been employed as
a strategic approach to minimize power distribution system losses
and effectively regulate voltage levels. Tap-changing voltage reg-
ulators are also critical for controlling bus voltages, especially in
accommodating the increasing integration of distributed energy
resources (DERs) with intermittent outputs. This paper intro-
duces novel methodologies to address the challenges of dynamic
reconfiguration and optimal tap setting in unbalanced three-
phase distribution systems. We propose an approximated mixed-
integer quadratically constrained program (MIQCP) to model
dynamic reconfiguration, along with a pioneering formulation
for voltage regulator (VR) tap-setting based on Special Ordered
Set type 1 (SOS1). To mitigate computational complexity, we
propose a physics-informed spatial-temporal graph convolutional
network (STGCN) with an integrated link classifier. The proposed
approach enables efficient solution generation by fixing specific
variables in the MIQCP instance and solving the simplified sub-
MIP using an MIP solver. Numerical studies demonstrate the
superior prediction accuracy of our STGCN model compared
to baseline neural network models, resulting in reduced DER
curtailment and voltage deviation with shorter computation time.

Index Terms—Physics-informed networks, dynamic reconfigu-
ration, voltage regulation, unbalanced distribution systems.

NOMENCLATURE

A. Sets, Constants, and Coefficients

T Set of operation periods.
G,S Set of DERs and substations.
N ,N3 Set of all buses and three-phase buses.
N(i) Set of neighbor buses of bus i.
E , Es, Er Set of all lines, switches and voltage regulators.
Φi Set of phases of bus i.
Φij Set of phases of line (i, j).
N,Ns Number of buses and substations.
is Virtual bus used for the fomulatation of voltage

regulator (i, j).
cg Cost coefficient of DER curtailment, k$/KWh.
cd Cost coefficient of voltage deviation, k$/(KV)2.

B. Decision Variables and Parameters

Pgϕi,t, Qgϕi,t Active and reactive output of DER i at time t
on phase ϕ.

Pg
ϕ

i,t, Sg
ϕ
i,t Maximum active power output and capacity of

DER i at time t on phase ϕ.
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Psϕn,t, Qsϕn,tActive and reactive power of substation i at
time t on phase ϕ.

Pdϕi,t, Qdϕi,t Active and reactive load of bus i at time t on
phase ϕ.

Pϕ
ij,t, Q

ϕ
ij,t Active and reactive power flow from bus i to

bus j at time t on phase ϕ.
P ij,t,Qij,t Active and reactive power flow vector from bus

i to bus j at time t on phase ϕ, R3×1.
rij ,xij Resistance and reactance matrix of line (i, j),

R3×3.
r̃ij , x̃ij Transformed resistance and reactance matrix of

line (i, j), R3×3.
Sij Power flow capacity of line (i, j).
Uϕ
i,t Squared voltage magnitude of bus i at time t

on phase ϕ.
Udϕi,t Deviation in squared voltage magnitude of bus

i from the reference value at time t on phase
ϕ.

Vi, Vi Upper and lower limit of voltage magnitude of
bus i.

V r
i , V

r
i Upper and lower voltage magnitude reference

of bus i.
Ûi,t Average voltage magnitude of three phases of

bus i at time t.
δ Maximum voltage imbalance limit for three-

phase buses.
αij,t Binary variable that is set to 1 if switch (i, j)

is closed at time t, and 0 otherwise.
βij,t Binary variable that is set to 1 if bus j is the

parent of bus i at time t, and 0 otherwise.
γij,t Auxiliary variable that represents the operation

for switch (i, j) at time t, 1 denotes closing the
switch, and 0 otherwise.

τij,t Integer variable that indicates the tap position
of voltage regulator (i, j) at time t.

zij,t Auxiliary binary variable for tap position of
voltage regulator (i, j) at time t.

λij,t Tap position variation from last period of volt-
age regulator (i, j) at time t.

γmax, λmax Maximum number of switching/tap-changing
actions over all period T .

C. Operations

⊙ Element-wise Hadamard product.
(·)H Conjugate transpose.
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σ(·) Sigmoid function.
⌊x⌋ Round down the number x to the nearest integer.

I. INTRODUCTION

DYNAMIC network reconfiguration (DNR) has been an
effective method in minimizing power distribution sys-

tem losses, regulating bus voltages, and improving system
resilience [1]–[3]. The value of dynamic reconfiguration in
the presence of distributed energy resources (DERs) has been
studied in [4]. The findings reveal that the implementation
of DNR yields a proportional decrease in the system’s active
power loss with the increasing penetration of DERs, such as
wind and solar photovoltaic (PV). Voltage regulation in unbal-
anced distribution systems has become increasingly complex
and crucial due to the higher penetration of DERs. Several
other investigations [5], [6] show that the voltage volatility
is strongly influenced by the topology of power distribution
systems.

DNR is accomplished by adjusting the status of tie switches
and sectionalizers to change the topology of the system.
This problem suffers from the combinatorial explosion as
the number of binary decision variables that denote the
open/close status of tie switches or sectionalizers increases
significantly [7]. Moreover, the complexity of this problem
is further amplified by the nonlinearity of the power flow
constraints. Thus, it is challenging to improve both compu-
tational efficiency and solution quality for the DNR problem
in power distribution networks [8]. DNR problems can be
solved by heuristic algorithms such as the branch exchange
method [9], [10], genetic algorithm [11], [12], and particle
swarm optimization [13], [14]. Optimization techniques have
also been used to solve the DNR problem that considers the
intermittent DERs. Wang et al. [15] introduced an approximate
dynamic programming (ADP) approach aimed at minimizing
curtailment of DERs and load shedding. Zhan et al. [16]
proposed a switch opening and exchange (SOE) method to
effectively manage variable and uncertain load and solar PV
output. Additionally, a distributionally robust model for three-
phase unbalanced DNR is presented in [17], which seeks
to determine the optimal configuration under the worst-case
probability distribution of DER outputs and loads within an
ambiguity set. In [18], a dynamic reconfiguration approach for
a three-phase unbalanced distribution network is proposed to
minimize daily power loss, following the method outlined by
B.A. Robbins in [19], which neglects higher-order power flow
constraints.

Tap-changing voltage regulators (VRs) are frequently em-
ployed in distribution systems to control voltage levels and
minimize power losses. In addition to control-based strategies
[20]–[22], optimization-based methods for VRs are widely
studied and employed. In [23], the tap positions are mod-
eled as discrete variables within the optimal power flow
(OPF) problem. This formulation leads to a mixed-integer
program (MIP) formulation. The complexity of the problem
also grows exponentially with the number of VRs. To address
this challenge, various initial studies [24]–[26] have proposed
representing transformer tap positions as continuous variables.

Subsequently, the solutions are rounded to the nearest discrete
variables. In [26], the optimal configuration of tap positions
in unbalanced three-phase systems is formulated as a rank-
constrained semidefinite program (SDP). By relaxing the non-
convex rank-1 constraint, a convex SDP problem is obtained
and solved using the alternating direction method of mul-
tipliers (ADMM). In the study by Savasci et al. [27], an
automated tap-changing process for VRs is proposed, utilizing
a bang-bang type control rule parameterized by a dead band
parameter. Accounting for the unbalanced nature of multi-
phase feeders, an optimization-based dead band tuning is
proposed and formulated as a mixed-integer linear program
(MILP) aimed at minimizing both the total number of tap
switching and the curtailment of DERs. However, there is very
little work exploring the joint voltage regulation and network
reconfiguration problem in three-phase unbalanced distribu-
tion systems. In [8], the optimal network reconfiguration of
unbalanced distribution systems with renewable DERs and
VRs is explored. The co-optimization problem is framed as a
mixed-integer semidefinite programming (MISDP) with choral
relaxation. However, it only focuses on a single time period,
and its computational demands become overwhelming when
addressing distribution systems of substantial size.

The recent advances in deep learning (DL) have enabled
deep neural networks (DNN)-based applications in power
systems. There is a growing interest in the power commu-
nity for the application of physics-informed neural networks
(PINN) [28], which has found applications in state/parameter
estimation, system dynamic analysis [29]–[31] and optimal
power flow. Lately, there has been a surge in research exploring
the application of PINN to address network reconfiguration
challenges in distribution systems. J. Authier et al. [32] pro-
posed an end-to-end physics-informed graph neural network
framework for dynamic reconfiguration problems where the
operational and connectivity constraints are directly incorpo-
rated into the learning framework. In [33], a leaning-assisted
physics-informed graph convolution network is introduced to
predict the connectivity of tie lines. Nevertheless, these two
papers concentrated solely on balanced distribution systems
and did not take VRs into account.

To fill the knowledge gap mentioned earlier, we first intro-
duce an approximated mixed-integer quadratically constrained
program (MIQCP) to solve the DNR problem in unbalanced
three-phase distribution systems. Additionally, we introduce a
novel formulation for VR tap-setting based on Special Ordered
Set type 1 (SOS1). Subsequently, in an effort to mitigate
computational complexity, we propose a physics-informed
spatial-temporal graph convolution network (STGCN) with an
integrated link classifier, where the physical structure of the
distribution system is utilized to construct the topology of
the spatial-temporal graph. This model is designed to predict
both the connectivity of tie switches/sectionalizers and the
tap position of VRs. As illustrated in Fig. 1, the workflow
begins with utilizing topology data, electric load, and DER
outputs to construct spatial-temporal graphs. These graphs are
subsequently fed into a physics-informed STGCN and a link
classifier to produce predictions for tie switches/sectionalizers
and tap positions of VRs. Leveraging these predictions, we can
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Fig. 1. The complete workflow of physics-informed STGCN for dynamic reconfiguration and voltage regulation.

then fix specific decision variables within the original MIQCP
and solve the simplified sub-MIP using an MIP solver. Nu-
merical studies demonstrate that our proposed STGCN model
outperforms the baseline neural network models in prediction
accuracy. Leveraging the predictions generated by STGCN
enables us to obtain superior solutions with reduced DER
curtailment and voltage deviation with shorter computation
time.

The main contributions of this paper are:
1) We construct an MIQCP model for collaborative dy-

namic network reconfiguration and voltage control with
VRs. In the proposed approach, we introduce a novel for-
mulation for tap positions using SOS1 without relaxing
the integrality constraint.

2) We propose a spatial-temporal graph convolutional net-
work to extract spatial and temporal information from
unbalanced distribution systems. The output of this
model is then fed into a novel link classifier to deliver
accurate predictions for the connectivity of tie switches,
sectionalizers, and the optimal tap positions of VRs.

3) We develop an algorithm to fix binary decision variables
by using the probabilistic predictions for the status of
tie switches/sectionalizers and tap positions of VRs. By
solving the simplified sub-MIP problem, the proposed
algorithm achieves superior network reconfiguration and
voltage regulation solutions than both the baseline ma-
chine learning models and the commercial MIP solver.

The subsequent sections of this paper are structured as
follows: Section II presents the MIQCP formulation for co-
optimizing dynamic reconfiguration and voltage regulation.
In Section III, we introduce the STGCN model along with
the algorithm for sub-MIP solving. Section IV presents the
numerical studies. Section V provides the conclusions.

II. RECONFIGURATION AND VOLTAGE REGULATION
FORMULATION FOR THREE-PHASE DISTRIBUTION SYSTEM

In this section, we present the mathematical formulation
of joint reconfiguration and voltage regulation in unbalanced
three-phase distribution networks. The problem formulation is
derived based on the linear approximation technique for un-
balanced three-phase distribution systems [19]. The objective
function is introduced in Subsection A. The constraints are
presented in Subsection B to Subsection E.

A. Objective Function

The objective of the collaborative network reconfiguration
and voltage regulation is two-fold as shown in (1)-(2). First,
it aims to minimize the curtailment of DER generation for
both economic and environmental benefits. Second, it tries to
reduce voltage deviation beyond the normally accepted bounds
to prevent unintentional damage to the electric equipment of
end-use customers.

min
Pgϕ

i,t,Qgϕ
i,t,U

ϕ
i,t,αij,t,βij,t,τij,t,zij,t

∑
t∈T

Ft (1)

Ft =
∑
i∈G

∑
ϕ∈Φi

cg(Pg
ϕ

i,t − Pgϕi,t) +
∑
i∈N

∑
ϕ∈Φi

cdUdϕi,t (2)

Subject to constraints (3)-(8), (12)-(17), (20)-(35).

B. Power Flow Constraints

By assuming the voltages of each bus are nearly balanced
and neglecting the higher-order terms [19], we obtain the
active and reactive power balance equations (3)-(4) for bus
i ∈ N/S, and equations (5)-(6) for bus i ∈ S . Then,
∀ϕ ∈ Φi,∀t ∈ T , we have:

Pgϕn,t
n:n=i,n∈G

− Pdϕi,t =
∑

(i,j)∈E

Pϕ
ij,t −

∑
(k,i)∈E

Pϕ
ki,t, (3)

Qgϕn,t
n:n=i,n∈G

−Qdϕi,t =
∑

(i,j)∈E

Qϕ
ij,t −

∑
(k,i)∈E

Qϕ
ki,t, (4)

Psϕn,t
m:m=i,n∈S

− Pdϕi,t =
∑

(i,j)∈E

Pϕ
ij,t −

∑
(k,i)∈E

Pϕ
ki,t, (5)

Qsϕn,t
m:m=i,n∈S

−Qdϕi,t =
∑

(i,j)∈E

Qϕ
ij,t −

∑
(k,i)∈E

Qϕ
ki,t, (6)

Similarly, for each line (i, j) ∈ E , by neglecting the higher-
order terms and adding/subtracting a large positive number
[4], we obtain the voltage magnitude constraint as shown in
(7)-(8). Then, ∀ϕ ∈ Φij ,∀t ∈ T , we have:

Uϕ
j,t ≤ Uϕ

i,t − 2(r̃ϕijP ij,t + x̃ϕ
ijQij,t) +M(2− αij,t − eϕi,j),

(7)

Uϕ
j,t ≥ Uϕ

i,t − 2(r̃ϕijP ij,t + x̃ϕ
ijQij,t)−M(2− αij,t − eϕi,j),

(8)
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where M is a large positive constant. eϕi,j is the composition
indicator which equals 1 if line (i, j) has phase ϕ and 0 oth-
erwise. r̃ij , x̃ij are the transformed resistance and reactance
of line (i, j) which are calculated by:

r̃ij = Re(aaH)⊙ rij + Im(aaH)⊙ xij (9)

x̃ij = Re(aaH)⊙ xij − Im(aaH)⊙ rij (10)

a = [1 e−j2π/3 ej2π/3]T , (11)

where ⊙ is the element-wise Hadamard product. aH is the
conjugate transpose of a.

C. Voltage Constraints

In this subsection, we formulate the voltage constraints.
In addition to voltage magnitude constraints (12)-(13), volt-
age imbalance is also a major concern in the distribution
system. Here we adopt the formulation in [18] to build the
phase imbalance constraints (14)-(15). Finally, the deviation
in squared voltage magnitude from the reference value is
computed utilizing (16) and (17).

Uϕ
i,t = 1, i ∈ S, ϕ ∈ Φi, t ∈ T (12)

Vi
2 ≤ Uϕ

i,t ≤ Vi
2
, i ∈ N/S, ϕ ∈ Φi, t ∈ T (13)

−δ ≤
Uϕ
i,t − Ûi,t

Ûi,t

≤ δ, i ∈ N3, ϕ ∈ Φi, t ∈ T (14)

Ûi,t =
1

3

∑
ϕ∈Φi

Uϕ
i,t, i ∈ N3, t ∈ T (15)

Udϕi,t ≥ Uϕ
i,t − (V r

i )
2 (16)

Udϕi,t ≥ −Uϕ
i,t + (V r

i )
2 (17)

D. Voltage Regulator Formulation

To obtain a linear formulation of voltage regulators, we start
from the equivalent voltage model developed in [26]. Assume
there is a three-phase, wye-wye solidly grounded voltage
regulator between bus i and bus j. It can be equivalently
modeled as an ideal transformer in series with an impedance
as shown in Fig. 2, where bus is is a virtual node between
bus i and bus j that is connected to the secondary side of the
ideal transformer.

i jisideal transformer

𝑃𝑃𝑖𝑖 
𝜙𝜙,𝑄𝑄𝑖𝑖 

𝜙𝜙 𝑃𝑃𝑖𝑖𝑠𝑠 
𝜙𝜙,𝑄𝑄𝑖𝑖𝑠𝑠 

𝜙𝜙

Z

𝑉𝑉𝑖𝑖
𝜙𝜙 𝑉𝑉𝑖𝑖𝑠𝑠

𝜙𝜙

Fig. 2. Equivalent voltage regulator model.

The ideal transformer can be formulated as (18) for each
phase, where ηij is the tap ratio.

V ϕ
is

= ηijV
ϕ
i , Pϕ

i = −Pϕ
is
, Qϕ

i = −Qϕ
is

(18)

Then, assume τij is an integer variable that represents the
tap position and ηij = ηij + τij∆ηij , 0 ≤ τij < Mij ,
where Mij is the number of tap positions for voltage regulator
between bus i and j, ηij is the lower bound of the tap ratio, and

∆ηij > 0 is the change in tap ratio for each tap adjustment.
Then we have:

Uϕ
is,t

= η2ijU
ϕ
i,t = (ηij + τij∆ηij)

2Uϕ
i,t (19)

Since (19) has a nonlinear term that contains the product of
a continuous variable and a squared integer variable, it cannot
be handled by most of the MIP solvers. So we apply Special
Ordered Set type 1 (SOS1) to tackle this problem. Formally,
for a set of binary variables {z1, z2, . . . , zMij

} with associated
non-negative weights {w1, w2, . . . , wMij}, we give the linear
formulation of voltage regulator as:

Pϕ
i = −Pϕ

is
, Qϕ

i = −Qϕ
is

(20)

Uϕ
is
= Uϕ

i ·
Mij∑
m=1

zm · wm (21)

Mij∑
m=1

zm · wm = η2ij ,

Mij∑
m=1

m · zm = τij ,

Mij∑
m=1

zm = 1 (22)

E. The Other Constraints
The other constraints considered here include the network

radiality constraints, DER output constraints, branch capacity
constraints and switch operation constraints.

1) Network Radiality Constraints: We employ the follow-
ing equations to enforce the radiality and connectivity of the
system, ensuring that all buses, except for the substation buses,
have precisely one parent.∑

(i,j)∈E

αij,t = N −Ns, t ∈ T (23)

βij,t + βji,t = αij,t, (i, j) ∈ E , t ∈ T (24)∑
j∈N(i)

βij,t = 1, i ∈ N/S, t ∈ T (25)

βij,t = 0, i ∈ S, t ∈ T (26)

2) DER Output Constraints:

0 ≤ Pgϕi,t ≤ Pg
ϕ

i,t, i ∈ G, ϕ ∈ Φi, t ∈ T (27)

(Pgϕi,t)
2 + (Qgϕi,t)

2 ≤ (Sgϕi,t)
2, i ∈ G, ϕ ∈ Φi, t ∈ T (28)

3) Branch Capacity Constraints:

(Pϕ
ij,t)

2 + (Qϕ
ij,t)

2 ≤ αij,t(Sij)
2, (i, j) ∈ E , ϕ ∈ Φij , t ∈ T

(29)

4) Switch and Voltage Regulator Operation Constraints:
To mitigate excessive operations and prolong the lifespan of
switches and voltage regulators, we introduce maximum op-
eration time constraints for each switch and voltage regulator
as follows:

γij,t ≥ αij,t − αij,t−1, (i, j) ∈ Es, t ∈ T (30)
γij,t ≥ αij,t−1 − αij,t, (i, j) ∈ Es, t ∈ T (31)∑

t∈T

γij,t ≤ γmax,∀(i, j) ∈ Es (32)

λij,t ≥ τij,t − τij,t−1, (i, j) ∈ Er, t ∈ T (33)
λij,t ≥ τij,t−1 − τij,t, (i, j) ∈ Er, t ∈ T (34)∑

t∈T

λij,t ≤ λmax,∀(i, j) ∈ Er (35)
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III. PHYSICS-INFORMED GRAPH CONVOLUTIONAL MODEL
FOR RECONFIGURATION AND VOLTAGE REGULATION

In this section, we introduce the proposed physics-informed
graph convolutional model for collaborative distribution sys-
tem reconfiguration and voltage regulation. The overall frame-
work of the proposed model is shown in Fig. 1. It begins
by feeding the constructed physics-informed graphs into a
spatial-temporal graph convolutional network (STGCN). Sub-
sequently, the resulting graph is passed to a link classifier,
where node embeddings are leveraged to generate edge embed-
dings. Finally, these edge embeddings are employed to forecast
the status of switches and the tap position of voltage regulators.
By fixing some decision variables predicted by the proposed
physics-informed graph convolutional model, we can simplify
the original optimization problem as sub-MIP problems which
are much easier to solve.

A. Graph Representation and Feature Definition

In this subsection, we represent the unbalanced distribution
system as a graph, denoted by G = (V,E,A). Here V
is the set of nodes that corresponds to the buses in the
distribution system, |V| = N . Similarly, E is the set of edges
that corresponds to the lines within the distribution system,
|E| = |E|. A ∈ Rn×n is the adjacency matrix that indicates
the connectivity of line segments, Aij equals 1 if line (i, j)
are connected and 0 otherwise.

In order to capture the spatial and temporal pattern of the
unbalanced distribution system, we define the node feature
as xi,t = [Pgi,t,Pdi,t,Qdi,t, V i, V i], x ∈ RN×11×T . Here
Pgi,t is a vector of the three-phase DER maximum active
power generation on bus i at time t. Pdi,t and Qdi,t are the
three-phase active and reactive load demand on bus i at time
t. In order to make the graph homogeneous, for buses that do
not have DER and/or load, we set Pgi,t and/or Pdi,t,Qdi,t

to zero vectors. For buses that are not there-phase, we use the
value of 0 for the missing phases.

Additionally, the normalized graph Laplacian matrix is
defined as L = In −D−1/2AD−1/2, where In is the identity
matrix, D is the diagonal degree matrix. If there are two
branches connected to bus i, then Dii = 2, Dij = 0,∀i ̸= j.

B. Extracting Spatial Features using Chebyshev Convolution

We adopt Chebyshev convolution [34] to extract the spatial
features of the graph. This is because Chebyshev convolu-
tion enables localized information aggregation by allowing
the model to focus on a limited number of neighboring
nodes, which is particularly useful for graph-structured data
where nodes have varying degrees of connectivity. Besides,
Chebyshev convolution is computationally efficient, making it
scalable to large graphs with many nodes and edges such as
that of power distribution systems.

For each time period t, the node embedding is calculated
using the following graph convolution (36). Here ∗G is the spa-
tial convolution operator, which represents the multiplication
of a signal xt with a spatial kernel Θ. By setting different

respective fields Ks, the information of Ks−hop neighbors
will be propagated to its center node.

x′
t = Θ ∗G xt = Θ(L)xt ≈

Ks−1∑
k=0

θkTk(L̃)xt, (36)

where Θ is the convolution kernel. ∗G is the graph convolution
operator. L̃ = 2L

λmax
− I is the scaled Laplacian matrix. λmax

is the largest eigenvalue of L. Tk(L̃) ∈ Rn×n is the k-th
order Chebyshev polynomial, with Tk(L̃) = 2L̃Tk−1(L̃) −
Tk−2(L̃), T0(L̃) = In, T1(L̃) = L̃. θk is the weight matrix.

C. Extracting Temporal Features using Causal Convolution

We use Causal convolution with a Kt−width kernel to
extract the temporal features, which can maintain the temporal
causality of the input sequence. The Causal convolution is
followed by a gated linear unit (GLU) to model non-linearity.

For each node i, the node embedding is calculated using
the graph convolution (37). By varying the value of Kt,
we explore the Kt neighbors of elements within the input
sequence xi. Similarly, we introduce ∗T as the temporal
convolution operator and Γ is the temporal kernel.

x′
i = Γ ∗T xi = (W1 ∗ xi)⊙ σ(W2 ∗ xi), (37)

where W1,W2 ∈ Rkt×ci×co are casual convolution kernels.
ci, co are the numbers of input channel and output channel of
kernels W1,W2. ∗ is the convolution operation. σ(·) is the
sigmoid function.

D. Spatiotemporal Graph Convolution Block

After setting up the Chebyshev and Casual convolution
layer, we use them to construct a spatiotemporal convolution
block to jointly process the spatiotemporal features of the
physics-informed graph. As suggested by [35], we apply a
“sandwich” structure, with a spatial layer positioned between
two temporal layers. The output of block x′ is calculated as:

x′ = Γ1 ∗T max (0,Θ ∗G (Γ0 ∗T x)) , (38)

where Γ0,Γ1 are the upper and lower temporal kernels. Note
that since x is a 3-D variable, the temporal kernels Γ0,Γ1 are
applied on every node of x while the spatial kernel is applied
on every time step of x.

E. Link Classifier for Switches and Voltage Regulators

After processing nodal features with the spatiotemporal
graph convolution module, we now propose a link classifier
to predict the connectivity of switches and the tap position
of voltage regulators. For every time step, we first obtain the
embedding for each device as:

lij =

Kf∏
k=1

Wk(x
′
i ⊙ x′

j),∀(i, j) ∈ Es ∪ Er, (39)

where Wk is a weight matrix of fully-connected layer k. Es, Er

are the set of switches and the set of voltage regulators.
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Then we calculate the probability that a switch is closed as:

ρsij,t = σ

(
D∑

d=1

lij,d,t

)
,∀(i, j) ∈ Es, (40)

where D is the output dimension of the final fully-connected
layer K. Here we set D to be the maximum number of tap
positions of all voltage regulators.

For voltage regulators, we adopt an ordinal representation
[36] to encode the natural order between the discrete actions
of setting the tap position. Specifically, for each tap position
m ≤ Mij , the embedding for the voltage regulator is first
pre-processed as:

l′ij,m,t =

m∑
d=1

ln lij,d,t +

Mij∑
d=m+1

ln (1− lij,d,t), (41)

where l′ij,m,t is the ordinal encoding of tap position m of
the voltage regulator (i, j) at time t. Then, the probability
distribution for tap positions can be calculated as:

ρrij,m,t =
exp (l′ij,m,t)∑Mij

d exp (l′ij,d,t)
,∀m ∈ Mij (42)

The overall loss function for the neural network model has
three components:

L(Ξ,W) = L1 + L2 + L3, (43)

where Ξ is the set of all convolution kernels. W is the set of
weight matrices associated with fully-connected layers.

The first component is the logistic loss function for the
switches, designed to enhance the accuracy of predicting
switch statuses.

L1 = −
T∑

t=1

∑
ij∈Es

(
αij,t log(ρ

s
ij,t) + (1− αij,t) log(1− ρsij,t)

)
(44)

The second component of the loss function incorporates the
physical network’s radiality constraint, ensuring the topology
of the power distribution grid remains radial.

L2 =

T∑
t=1

∑
ij∈Es

⌊ρsij,t + 0.5⌋ − (N −Ns)

2

(45)

The third component of the loss function corresponds to
the cross entropy loss for voltage regulators, which is used to
improve the prediction accuracy of tap position.

L3 = −
T∑

t=1

Mij∑
m=1

∑
ij∈Er

zij,m,t log(ρ
r
ij,m,t), (46)

where zij,m,t is a binary indicator used in SOS1 that is set to
1 if the tap position of voltage regulator (i, j) is at position
m at time t, and 0 otherwise.

F. Sub-MIP Solving with Variable Predictions

Given the predictions of the decision variables, we could fix
those with high prediction performance and solve the simpli-
fied sub-MIP problems. We establish two evaluation metrics
for prediction performance associated with switch and VR
variables. For all time steps t within the set T , we define the
prediction accuracy (Acc) and prediction discrepancy (Dcc)
as follows:

Acc(α̂ij,t) =
1

Ng

Ng∑
n=1

1
(
ysij,t(Gn) = αn,ij,t

)
× 100%, (47)

Dcc(τ̂ij,t) =
1

Ng

Ng∑
n=1

∣∣yrij,t(Gn)− τn,ij,t
∣∣× 100%, (48)

where α̂ij,t, τ̂ij,t are the switch and VR variables that we aim
to predict. Ng is the number of graphs in the dataset. ysij,t =
⌊ρsij,t + 0.5⌋ is the predicted status for the switch (i, j) ∈ Es.
yrij,t = argmaxm∈Mij

{ρrij,m,t} is the predicted tap position for
the voltage regulator (i, j) ∈ Er.

The detailed process of sub-MIP solving is given in Algo-
rithm 1. The main steps of the algorithm include formulating
the MIP instance and constructing the graph based on sys-
tem parameters. It then iterates over time steps and edges,
calculating prediction accuracies for switch variables (Acc)
and prediction discrepancies for VR variables (Dcc) using
the validation dataset. Based on these metrics and thresh-
old comparisons, the algorithm selectively fixes variables by
adding constraints to the MIP instance. Finally, it solves the
simplified sub-MIP to obtain the desired outputs, including
switch statuses, tap positions of VRs, and DER outputs.

Algorithm 1 Sub-MIP Solving
Input: System topology, load, and DER data, learned proba-
bility distribution ρs

θ,ρ
r
θ, switch accuracy and VR discrepancy

thresholds ϵs, ϵr.
Output: switch statuses, tap positions of VRs, and DER output.

1: Formulate MIP instance I and graph G based on system
topology, load and DER data.

2: for t ∈ T do
3: for (i, j) ∈ Es do
4: Calculate the prediction Acc of variable α̂ij,t on

validation dataset according to (47).
5: if Acc(α̂ij,t) ≥ ϵs then
6: Add constraint αij,t = ysij,t(G) to I .
7: end if
8: end for
9: for (i, j) ∈ Er do

10: Calculate the prediction Dcc of variable τ̂ij,t on
validation dataset according to (48).

11: if Dcc(τ̂ij,t) ≤ ϵr then
12: Add constraint τij,t = yrij,t(G) to I .
13: end if
14: end for
15: end for
16: Solve the simplified sub-MIP I ′ and obtain the output.
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IV. CASE STUDIES

In this section, we begin by presenting the numerical setup.
Subsequently, we explain the training process for both the
baseline neural network models and our proposed STGCN
model. Following that, we provide a comprehensive compari-
son of the performance of the proposed and baseline models,
along with analyses of the voltage and solar PV profiles of
testing instances. Lastly, we examine the sensitivity of DER
curtailment and voltage deviation to the ratio of their cost
coefficients cg/cd.

A. Numerical Study Setup

In this subsection, we present the numerical setup for
our study. We selected the modified IEEE 123-bus feeder
system [37] as the test system. As depicted in Fig. 3, the
system exhibits significant unbalance owing to its multi-phase
distribution line configurations. Note that in visualizing the
feeder, we excluded voltage regulators, shunt capacitors, and
transformers. To study distribution systems with significant
DERs, we integrated 14 solar PV stations in the feeder. In ad-
dition, 4 voltage regulators, 6 tie switches, and 3 sectionalizers
are incorporated into the feeder as shown in Fig. 3. The key
parameters of the MIQCP are given in Table I. Note that for
all solar PV stations, their capacity are set to 50 KVA.
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Fig. 3. 123-bus unbalanced distribution system.

TABLE I
KEY PARAMETERS OF THE MIQCP PROBLEM

Parameter Value Parameter Value

cg 10 k$/KWh δ 0.1

cd 1 k$/(KV)2 Mij 11

Vi 0.90 p.u. Sgi,t 50 KVA

Vi 1.10 p.u. Sij 2000 KVA

V r
i 0.95 p.u. γmax 10

V r
i 1.05 p.u. λmax 3

We adopt the time series load and solar PV data [38] created
by the National Renewable Energy Laboratory (NREL) as the

dataset, which contains one year’s worth of data. We allocate
300 days of data for training, 30 days of data for model
validation, and 30 days of data for testing. To assess the
effectiveness of the proposed STGCN, we compare it with
various benchmark neural networks, which include the fully-
connected neural network (FNN), graph convolution network
(GCN) [39], and the inductive graph convolution network
(SAGE) [40]. The hyperparameters of the proposed STGCN
and link classifier are given in Table II . The benchmark neural
networks share the same hyperparameters with STGCN. All
models were trained on a server with a 32-core AMD Ryzen
Threadripper 3970X 3.7GHz CPU and three 10 GB NVIDIA
GeForce RTX 2080 Ti. We adopt Gurobi [41] as our MIP
solver. We set the MIP gap tolerance to 0.01% and impose a
computation time limit of 20 minutes for the solver.

TABLE II
HYPERPARAMETERS OF THE PROPOSED STGCN AND LINK CLASSIFIER

Model STGCN Link classifier

Number of layers 2 3
Input dimension 11 64

Hidden dimension 64 64
Output dimension 64 11

Learning rate 0.005
Batch size 32

Training epochs 200

B. Regulation Effect on Voltage Imbalance

In this subsection, we study the effect of regulation on
voltage imbalance. We begin by defining the voltage imbalance
factor (VIF) as follows:

VIFi,t(%) =
V max
i,t − V min

i,t

V avg
i,t

× 100,∀ i ∈ N3, t ∈ T, (49)

where V max
i,t , V min

i,t , and V avg
i,t are the maximum, minimum,

and average voltage magnitude of bus i at time t across three
phases.

Then, we analyze the VIF of testing instances for two
MIQCP formulations: with and without the voltage imbal-
ance constraint (14). Table III presents the total VIF of all
three-phase buses over 7 testing days for both formulations.
For simplicity, we denote MIQCP without voltage imbalance
constraint (14) as MIQCP w/o VIC. It is evident that with the
voltage imbalance constraint (14), the solutions of the MIQCP
model consistently achieve a lower VIF across all testing days.

TABLE III
TOTAL VIF OF TESTING INSTANCES FOR TWO FORMULATIONS (%)

Day 1 2 3 4 5 6 7
MIQCP 64.2 65.6 65.5 62.2 64.5 62.0 65.0

MIQCP w/o VIC 70.9 78.6 77.2 75.9 73.8 80.0 79.2

To further illustrate the regulation effect on voltage imbal-
ance, we present the VIF of different buses on day 6 in Fig. 4.
The results clearly show that constraint (14) effectively reduces
the voltage imbalance to a lower level.
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Fig. 4. VIF of different buses on day 6.

C. Training Process Evaluations

In this subsection, we train the baseline and proposed
models using the collected dataset. Fig. 5 shows the validation
loss of the proposed and three baseline models. The dark-
colored curves are the average values across 10 experiments
with different random seeds and the light-colored regions
indicate the error bounds. The training times for the three
baseline models and STGCN are approximately 10 minutes
and 20 minutes, respectively. The extended training time for
STGCN is due to the temporal convolution operation. As the
training progresses, our proposed STGCN model consistently
shows a lower loss compared to the baseline models.
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Fig. 5. Losses on validation dataset.

To further compare the performance of the baseline models
and the proposed model, we show the average Acc of all
switch variables and the average Dcc of all VR variables on
the validation dataset. Fig. 6 shows the average Acc of switch
variables and average Dcc of VR variables of four models,
respectively. We can see that our proposed GNN model can
achieve a higher prediction accuracy and a lower prediction
discrepancy than the baseline models.

D. Testing Performance Comparisons

Once the offline training process concludes, we proceed to
evaluate the performance of the proposed and baseline models
by applying the trained models to the test dataset. Initially, we
employ four trained models on the test dataset to assess their
prediction capabilities. Table IV presents the average count of
switch variables within various accuracy intervals across 10
runs with different random seeds, considering that the total
number of switch variables for prediction is 216. Similarly,
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Fig. 6. Average prediction accuracy and discrepancy of four models on the
validation dataset.

Table V illustrates the average count of VR variables within
different discrepancy intervals across 10 runs with different
random seeds, with a total of 96 VR variables for prediction.
As shown in Tables IV and V, the proposed STGCN consis-
tently outperforms the baseline models by yielding the highest
prediction accuracy and the lowest prediction discrepancy.

TABLE IV
AVERAGE NUMBER OF SWITCH VARIABLES IN DIFFERENT ACCURACY

INTERVALS

Algorithm
Acc (%) ≥ 80 ≥ 85 ≥ 90 ≥ 95 = 100

FNN 133.7 131.0 121.2 116.2 107.2
GCN 143.2 141.2 134.0 129.0 119.0
SAGE 145.4 142.0 134.0 129.0 119.0

STGCN 154.0 149.0 138.0 133.0 123.0

TABLE V
AVERAGE NUMBER OF VR VARIABLES IN DIFFERENT DISCREPANCY

INTERVALS

Algorithm
Dcc (%) ≤ 10 ≤ 20 ≤ 30 ≤ 40 ≤ 50

FNN 31.4 42.6 46.9 48.0 48.0
GCN 45.9 62.1 70.5 76.7 78.8
SAGE 47.3 62.5 69.3 71.9 72.4

STGCN 50.2 66.7 75.4 79.0 80.7

Then, we apply four trained models to the testing instances
according to Algorithm 1. Here we set the thresholds ϵs =
1.0, ϵr = 0.1. We randomly select 7 days from the pool
of 30 testing days for evaluation. The objective values and
solution times of the four models are presented in Table VI
and Table VII. A dash (“-”) in the table indicates instances
where the algorithm did not find a feasible solution within
the 20-minute time limit. Additionally, to demonstrate the
effectiveness of our proposed model, we include the objective
value and solution time of the baseline MIQCP approach.

From Table VI we can see that our proposed model com-
bined with MIQCP can achieve the lowest objective values
for all testing days. This suggests that incorporating the
STGCN model enhances the optimization performance the
most compared to other approaches. From Table VII we
can see that the MIQCP + STGCN approach exhibits the
lowest average solving time among all models, indicating its
superior efficiency in solving testing instances with the shortest
computation time.
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TABLE VI
OBJECTIVE VALUE OF TESTING INSTANCES

Day MIQCP MIQCP
+FNN

MIQCP
+GCN

MIQCP
+SAGE

MIQCP
+STGCN

1 − 2.92 6.41 − 0.47
2 1.58 4.30 1.38 1.78 1.23
3 1.96 8.08 0.74 0.79 0.42
4 1.07 3.90 16.18 2.90 0.88
5 1.27 14.24 0.67 2.34 0.42
6 0.42 3.38 1.41 0.79 0.39
7 0.97 4.02 1.71 1.55 0.38

Avg obj 1.21 5.83 4.07 1.69 0.59

TABLE VII
SOLVING TIME OF TESTING INSTANCES (s)

Day MIQCP MIQCP
+FNN

MIQCP
+GCN

MIQCP
+SAGE

MIQCP
+STGCN

1 1200.0 146.6 102.2 − 43.7
2 1200.0 146.2 58.25 29.8 54.3
3 1200.0 92.6 55.5 52.0 42.9
4 1200.0 132.7 41.6 55.9 30.6
5 1200.0 54.9 55.6 29.9 41.9
6 1200.0 35.6 53.1 70.2 53.0
7 1200.0 124.1 21.6 37.3 48.6

Avg time 1200.0 104.7 55.4 45.9 45.0

E. Voltage and Solar PV Output Profiles

In this subsection, we present the voltage and solar PV out-
put profiles of the testing instances. Following the resolution
of the testing instances, we first extract the voltage profiles for
day 3 to show the effectiveness of our proposed model. Fig. 7
illustrates the voltage profiles of phase A on bus 114 obtained
using the proposed and four baseline approaches. Notably,
our proposed method, which combines MIQCP with STGCN
consistently upholds the voltage of bus 114 above 0.95 p.u.
across all time periods. It is worth mentioning that the MIQCP
with the FNN model exhibits the highest voltage deviation due
to its low prediction performance for switch statuses and VRs’
tap positions.
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Fig. 7. Voltage profiles of bus 114 on phase A.

Similarly, Fig. 8 shows the voltage profiles of phase B on
bus 160. Once again, our proposed STGCN model ensures that
the MIQCP maintains the voltage of bus 160 below 1.05 p.u.,
except for hour 9. In contrast, other approaches exceed the
preferred voltage upper bound for a greater number of hours.
Fig. 9 shows the voltage profiles of phase C on bus 95 and

we can see that the MIQCP with STGCN provides the most
stable voltage profile compared to other methods.
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Fig. 8. Voltage profiles of bus 160 on phase B.
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Fig. 9. Voltage profiles of bus 95 on phase C.

Next, we extract the solar PV output profiles of testing day 3
and compute the generation curtailments. Fig. 10 illustrates the
curtailment of solar PV generations obtained by five different
approaches. Due to space constraints, we present only the
curtailments of solar PV output at buses 63, 68, 75, 80,
87, 101, and 113. It is evident that the proposed model,
which combines MIQCP with the STGCN model leads to
zero curtailment, whereas other baseline approaches all yield
generation curtailment to some extent.
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Fig. 10. Overall solar PV generation curtailment at different buses of day 3.

F. Sensitivity to the Ratio of Cost Coefficients cg/cd

In this section, we investigate the sensitivity of solar PV
curtailment and voltage deviation to the ratio of their cost co-
efficients cg and cd, where cg and cd regulate the weighting of
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DER curtailment and voltage deviation in the objective func-
tion. In real-world operations, distribution system operators
may wish to manage DER curtailment and voltage deviation
in accordance with their preferences or system conditions.

For every setting of cg/cd, we gather 300 training samples
and 30 validation samples to train four neural network models.
Subsequently, we combine these trained models with MIQCP,
to perform joint network reconfiguration and voltage regula-
tion on 7 random testing days. Across each cg/cd setting, we
select identical testing days and present the average values of
solar PV curtailment and voltage deviation in Table VIII.

TABLE VIII
SOLAR PV CURTAILMENT AND VOLTAGE DEVIATION UNDER DIFFERENT

RATIOS OF cg/cd

cg/cd(
(KV)2/KWh

) Solar PV curtailment (KWh)

MIQCP MIQCP
+FNN

MIQCP
+GCN

MIQCP
+SAGE

MIQCP
+STGCN

0.1 1069.7 738.8 713.3 353.5 96.4
0.5 877.3 735.0 656.2 190.6 93.8
1 863.3 638.0 322.0 162.6 23.9
5 163.5 527.3 123.1 82.8 21.5
10 55.8 329.0 101.4 42.1 13.2

cg/cd(
(KV)2/KWh

) Voltage deviation (KV)

MIQCP MIQCP
+FNN

MIQCP
+GCN

MIQCP
+SAGE

MIQCP
+STGCN

0.1 0.89 4.37 3.19 2.02 0.69
0.5 1.24 4.96 3.96 2.07 0.74
1 1.25 6.59 4.85 2.17 0.75
5 1.41 7.30 5.65 2.49 1.06
10 1.56 12.58 6.24 3.91 1.20

As the ratio cg/cd increases, the solar PV curtailment de-
creases across all five approaches, while the voltage deviation
increases. We can also observe that solar PV curtailment
demonstrates greater sensitivity to variations in the cg/cd
ratio. Finally, among all the approaches, MIQCP + STGCN
consistently achieves the lowest levels of solar PV curtailment
and voltage deviation.

V. CONCLUSION

This paper presents a novel approach to perform joint
dynamic reconfiguration and voltage regulation in unbal-
anced three-phase distribution systems. We proposed an ap-
proximated MIQCP model for the problem and introduced
a novel formulation for VR tap-settings based on SOS1.
To improve computation efficiency, we proposed a physics-
informed STGCN, which effectively captures the spatial and
temporal load, DER, and voltage information in producing
accurate predictions for tie switches/sectionalizers and VR
tap positions. Leveraging these probabilistic predictions, we
devise an efficient algorithm for sub-MIP solving after fixing
certain binary variables. Numerical studies demonstrate the
superiority of our proposed approach over baseline models,
offering improved solutions with reduced DER curtailment and
voltage deviation with shorter computation time. The proposed
model and numerical study results showcase the potential of
physics-informed machine learning in improving the operation
efficiency of unbalanced distribution systems.
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