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A B S T R A C T

Superior short-term photovoltaic (PV) power forecasting is essential for formulating PV generation plans and 
implementing economic dispatch in power systems. However, existing short-term forecasting methods do not 
delve deeply into the interpretability of input features. They rely on static correlation analysis methods for 
processing numerical weather prediction (NWP), and often overlook the crucial step of correcting power fore
casting errors. Addressing these three research deficiencies, this study develops a short-term PV power fore
casting method employing a dynamic spatiotemporal attention graph convolutional network (STAGCN) with 
decomposition-based error correction. Initially, the spatio-temporal importance model explanation method is 
employed for feature extraction from multiple NWP sources, identifying key features for model forecasting. 
Furthermore, the spatiotemporal feature transformation and fusion technique is incorporated to construct a 
dynamic adjacency matrix and spatiotemporal dynamic graph structure using derived multi-source features. This 
structure feeds into the STAGCN model, yielding initial forecasting results. Ultimately, the improved comple
mentary ensemble empirical mode decomposition with adaptive noise and variational mode decomposition, long 
short-term memory network and mixed kernel density estimation are utilized for the decomposition and fore
casting of error sequences, subsequently refining the preliminary forecasting results. Simulation results 
demonstrate that the proposed forecasting approach enhances model interpretability, reduces forecasting errors, 
and achieves improved forecasting accuracy.

1. Introduction

The transition to renewable energy is reshaping the global energy 
landscape, holding significant strategic importance for achieving carbon 
neutrality, ensuring energy security, and combating climate change 
[1,2]. Among clean energy sources such as wind, hydro, and solar 
power, photovoltaic (PV) generation has emerged as the leading 
contributor to newly installed capacity due to its distinctive advantages. 
[3–5]. According to IRENA statistics, solar and wind energy remain the 
dominant forces in renewable energy expansion through 2025, jointly 
accounting for 96.6 % of new renewable capacity installations. Notably, 
solar power contributed over three-quarters of this new capacity. Solar 

installations surged by 32.2 %, reaching 1,865 GW. Wind power fol
lowed, growing by 11.1 %. China alone added 278 GW, with India 
contributing a further 24.5 GW [6].

The abundant availability of clean PV electricity offers benefits 
extending far beyond its inherent cleanliness and low-carbon attributes. 
It actively drives the development of new power systems, green certifi
cate trading markets, carbon accounting mechanisms, and solar cell 
technologies [7–10]. Nevertheless, the volatility and intermittency of PV 
output remain core constraints to enhancing integration capacity in 
power grids with high renewable energy penetration. [11]. Spatio- 
temporal mismatches between PV output and electricity demand 
create risks of power curtailment and strain grid stability. Furthermore, 
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the complex nature of changing meteorological conditions makes PV 
output challenging to manage. Accurate forecasting of PV generation 
over future periods is crucial; without it, the expanding application 
scope of PV power faces limitations. To address this challenge, re
searchers are increasingly exploring more advanced power forecasting 
techniques. Short-term PV power forecasting serves as a critical enabling 
technology that enhances grid integration capacity, drives power system 
transformation, optimizes energy storage dispatch, empowers electricity 
markets, and facilitates the achievement of dual-carbon goals [12,13].

Feature extraction is a critical step prior to undertaking forecasting 
tasks. It streamlines input data by identifying and transforming key 
variables and features, uncovering inherent data patterns to achieve 
efficient data compression and deeper information mining. This process 
enhances the forecasting model expressive power, reduces model 
redundancy, and improves computational efficiency. To address feature 
extraction in forecasting tasks, reference [14] calculated the Pearson 
correlation coefficient between input data and measured power. Their 
analysis revealed that for PV power generation, the most relevant nu
merical weather prediction (NWP) input variables are 15-minute reso
lution, hourly average irradiance, and solar elevation angle. Wind speed 
showed a lower correlation with power output and was consequently 
excluded from the feature set. Reference [15], considering the nonlinear 
correlation between meteorological features and wind power sequences, 
employed mutual information coefficients for feature analysis. Refer
ence [16] applied grey relational analysis to compute correlations be
tween meteorological factors, selecting the most relevant features for 
data dimensionality reduction. The process simplified the PV forecasting 
model and reduced computational complexity. These traditional feature 
analysis methods rely primarily on manual screening and basic corre
lation analysis. While capable of determining statistical associations 
between input and output feature sequences, they exhibit significant 
limitations. Specifically, it is difficult to validate the causality between 
the selected features and the model forecasting accuracy, resulting in 
opaque decision-making mechanisms. Current research has intensified 
systematic multidimensional investigations into advancing the inter
pretability of solar power forecasting models. When processing all-sky 
imager images and local meteorological data, reference [17] in
corporates long short-term memory (LSTM) network to construct future 
representations of sky evolution. However, this approach lacks depth in 
spatial feature extraction, resulting in incomplete characterization of 
feature information. Reference [18] applied an artificial neural network 
(ANN) to extract features from NWP data, simulating the model appli
cation in operational PV forecasting scenarios. Reference [19] employed 
gaussian support vector regression to process NWP and satellite data, 
but provided limited explanation for the final forecasting results. 
Reference [20] compared seven models, including stacked ensemble 
learning, for feature extraction from sky images. Yet, the extraction 
process overlooked the dynamic evolution characteristics of cloud maps. 
Conversely, reference [21] developed a novel local variable selection 
network to integrate all input features for load forecasting, effectively 
improving the interpretability of deep learning models. Further, refer
ence [22] conducted interpretability analysis on model outputs by 
calculating shapley additive explanation values to gain deeper insights 
into the causes of forecasting. Reference [23] proposed an attention- 
based temporal fusion transformer model. This model extracts statisti
cal features from solar irradiance, temperature, and historical PV data 
and provides interpretable insights into the influence of different fea
tures. Reference [24] leveraged a domain-adversarial graph neural 
network (DAGNN), combining graph embedding with domain- 
adversarial algorithms, to extract domain-invariant forecasting fea
tures from graph structures. This enabled accurate power forecasting in 
data-scarce regions. The aforementioned works primarily attempt to 
explain the model forecasting process through single dimensions, such 
as input feature extraction, analysis of computational weight parame
ters, or evaluation of result metrics. A common limitation is the lack of 
joint validation methods that systematically link feature extraction with 

model forecasting to provide explanations for the information learned 
by the model. Therefore, effectively identifying and validating the key 
feature variables that truly drive model performance improvement, and 
subsequently enabling traceable analysis of forecasting results, merits 
further investigation in power forecasting.

In the field of PV power forecasting, researchers aim to develop 
model architectures, manage computational costs, and improve fore
casting accuracy. To achieve this, various deep learning architectures 
have been widely adopted. Representative examples include recurrent 
neural networks (RNN) and their variants LSTM and gated recurrent unit 
(GRU), as well as convolutional neural networks (CNN) which excel at 
spatial feature extraction. At a practical level, reference [25] fused CNN 
and LSTM networks for solar radiation forecasting. Their results effec
tively supported the dynamic control and optimization of power output 
in PV power plants. Similarly, reference [26] focused on sky image data 
and utilized CNN technology to achieve short-term surface solar irra
diance forecasting. This approach reduced forecasting bias. However, a 
key limitation of existing methods lies in their failure to explicitly model 
the spatial correlation characteristics of time series in non-Euclidean 
spaces, constraining model expressiveness [27]. To find suitable solu
tions, researchers are turning to approaches like graph convolutional 
neural networks (GCN). Currently, graph neural networks (GNN), rep
resented by GCN, have primarily advanced in fields such as traffic flow 
forecasting [28–31], pedestrian trajectory forecasting [32], and power 
load forecasting [33]. Their application exploration in PV power fore
casting remains relatively limited. Reference [34] proposed a sub-region 
division method incorporating spatio-temporal correlations for regional 
distributed PV short-term forecasting. This method used GCN to capture 
spatial dependency features and leveraged LSTM to model temporal 
evolution patterns. It built a power plant forecasting model adaptable to 
different weather scenarios, leading to improved forecasting perfor
mance. Nevertheless, this method relies on predefined static graph 
structures to characterize node relationships. It lacks support for the 
model to adaptively screen neighborhood information and also lacks a 
dynamic mechanism to capture time-varying interaction patterns be
tween nodes. To optimize neighborhood information aggregation, some 
researchers have attempted to integrate attention mechanisms into GNN 
architectures. Reference [35] proposed the graph attention network 
(GAT). This architecture implicitly learns the weight distribution of 
neighboring nodes, enabling differentiated information aggregation. 
GAT was first applied to traffic flow forecasting and later gradually 
extended to the field of PV power forecasting [36,37]. Subsequent 
studies include reference [38] developing an improved time series dense 
encoder and graph attention network forecasting model to enhance the 
generalization capability of regional PV forecasting by extracting spatial 
features. Reference [39] combined amplitude-aware permutation en
tropy component reconstruction with GAT to build a graph sequence 
analysis framework for medium-to-long-term PV forecasting. Reference 
[40] constructed a parameter correlation adjacency matrix based on 
graph attention mechanisms, improving forecasting accuracy through 
dynamic weight optimization. Reference [41] designed a spatio- 
temporal attention-driven graph convolutional network, achieving ac
curate ultra-short-term forecasting for distributed PV via a dynamic 
adjacency matrix update mechanism. Reference [42] validated the 
effectiveness of an improved GAT framework in multi-source meteoro
logical node modeling and dynamic topology modeling, confirming that 
dynamic adjacency matrices can converge forecasting errors. In sum
mary, integrating spatio-temporal graph structures with dynamic adja
cency matrices can significantly enhance model representational 
capacity. Furthermore, graph attention networks incorporating atten
tion mechanisms have demonstrated considerable advantages in multi- 
domain time series forecasting tasks. However, while such GNN 
methods are widely applied in areas like traffic flow and pedestrian 
trajectory forecasting, they have yet to deeply penetrate PV power 
forecasting scenarios and exhibit notable limitations. 
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(1) Static Graph Limitations: Fixed adjacency matrices exhibit inad
equate capability in processing complex multi-source feature 
data, leading to insufficient feature extraction in latent 
dimensions.

(2) Insufficient dynamic graph modeling: Current construction 
methods for dynamic adjacency matrices remain simplistic and 
offer limited feature representation capability. This hinders the 
extraction of deep spatio-temporal dependencies.

(3) Attention Technique Constraints: Existing attention techniques 
fail to uncover complex implicit relational topologies when pro
cessing irregular feature patterns.

A comprehensive PV power forecasting framework should encom
pass three steps including input feature extraction, forecasting model 
construction, and error correction mechanisms. While current research 
continuously introduces deep learning to enhance short-term fore
casting accuracy, the focus largely lies on data quality optimization and 
model structure innovation. The need for post- forecasting error 

Fig. 1. The framework of the proposed forecasting method.

Z. Zhen et al.                                                                                                                                                                                                                                    Solar Energy 300 (2025) 113770 

3 



correction is often overlooked. PV power forecasting deviation is due to 
two factors. The first category is endogenous errors. These include 
model parameter configurations, inherent system biases, and measure
ment noise from data acquisition equipment. The second category in
volves exogenous disturbances. These encompass fluctuations in 
meteorological elements like irradiance, temperature, and humidity, 
which often exhibit predictable patterns. The interaction between these 
two categories leads to a combination of systematic errors and random 
deviations, necessitating the implementation of correction modules. 
Existing research on error correction predominantly adopts signal 
decomposition techniques [43–47]. For example, reference [48] used 
LSTM to correct forecasting based on similar-day samples but did not 
analyze the intrinsic characteristics of the error sequence itself. Refer
ence [49] decomposed the error sequence using wavelet transform and 
coupled it with KNN subsequence forecasting for error compensation. 
Reference [47] applied both complete ensemble empirical mode 
decomposition with adaptive noise (CEEMDAN) and variational mode 
decomposition (VMD) to decompose the original wind speed and error 
sequences. Reference [50] proposed a method based on improved 
adaptive noise complementary ensemble empirical mode decomposition 
(ICEEMDAN) and autoregressive integrated moving average (ARIMA) 
for error decomposition and forecasting. Comparisons with methods like 
empirical mode decomposition (EMD) and CEEMDAN demonstrated the 
effectiveness of error correction in reducing forecasting errors. It is 
important to note that the aforementioned methods are primarily 
applied in wind speed and wind power forecasting. Research on modal 
decomposition specifically for PV power errors remains largely unex
plored. Therefore, conducting an in-depth analysis of the influencing 
factors, fundamental composition, and physical meaning of PV power 
errors is necessary to effectively correct errors in solar power forecasting 
results sequence. To achieve a breakthrough in PV power forecasting 
technology, it is urgently required to focus on the following dimensions 
based on a comprehensive analysis of the limitations in existing 
research: 

(1) The research on the interpretability of input variables is not 
considered in the feature extraction stage of input data.

(2) During the model forecasting phase, few studies construct graph 
structures using multiple NWP sources, and the adoption of static, 
fixed adjacency matrices fails to adapt to changing meteorolog
ical features accordingly. Even when dynamic adjacency matrices 
are considered, they are often constructed using linear correla
tion coefficients. Such methods are limited in their ability to 
capture the complex, nonlinear relationship that commonly exist 
among meteorological variables, thereby restricting the model 
capacity to fully represent spatiotemporal dependencies.

(3) In the stage of result analysis, the error correction of power 
forecasting results is often neglected. Even when error correction 
is incorporated, the underlying mechanisms contributing to 
forecasting errors are often not thoroughly analyzed or accurately 
understood.

Aiming at the above three problems, a comprehensive PV power 
forecasting method is proposed that integrates a dynamic spatiotem
poral attention graph convolutional network (STAGCN) with iterative 
decomposition-based error correction. This method offers a novel 
approach that effectively improves forecasting accuracy by addressing 
three aspects of the forecasting tasks. 

(1) A spatiotemporal importance model explanation (STIME) that 
can identify the important features of the forecasting process is 
proposed. The spatio-temporal attention coefficient of the 
STAGCN model is combined with the STIME method to extract 
features and the influence of multi-source features on the model 
is further explored.

(2) A STAGCN model based on spatiotemporal attention feature 
transformation and fusion technique is developed. By combining 
spatiotemporal transformation fusion vectors to construct a 
spatiotemporal correlation coefficient tensor and a dynamic 
graph, the model facilitates the transition of traditional ap
proaches from static to dynamic, leading to modest improve
ments in forecasting accuracy.

(3) A new error correction strategy based on ICEEMDAN-VMD sec
ondary decomposition is proposed. This approach conducts a 
deep analysis of the error correction mechanism, decouples and 
reconstructs the error time series, and applies targeted correction 
methods to PV error components – effectively reducing overall 
forecasting error.

(4) Using a variety of comparison methods, the reliability of feature 
extraction strategy, dynamic space–time diagram, multiple error 
correction and other ideas in forecasting work is verified.

The subsequent sections of this paper are structured as theoretical 
exposition, case simulation, and concluding synthesis. Section II elabo
rates the fundamental theoretical framework encompassing multi- 
source NWP feature extraction, the STAGCN-based forecasting archi
tecture, and error correction techniques. Section III comprehensively 
details experimental dataset composition and computational environ
ment configuration. Concretely, comparative validation against six 
advanced graph neural network benchmarks demonstrates the superi
ority and engineering viability of the proposed PV power forecasting 
approach. Concluding remarks are presented in Section IV along with 
prospective research directions addressing data volume limitations and 
extreme weather adaptation mechanisms.

2. Methodology

The forecasting approach proposed in this paper comprises three 
essential components: a feature extraction unit, a power forecasting 
module, and an error correction technique. The complete procedural 
workflow is illustrated in Fig. 1. Subsequent content will elucidate the 
operational principles and interactive dynamics of these integrated 
modules.

During the feature extraction phase, historical PV power data 
initially facilitate weather pattern classification. Key information 
extraction from multi-source NWP meteorological parameters encom
passing irradiation, wind speed, and temperature employs the STIME 
technique, establishing dedicated datasets for three distinct weather 
patterns: clear, cloudy, and rainy conditions. The power forecasting 
module integrates spatiotemporal transformation fusion to process input 
features and construct dynamically evolving graphs. These graphs feed 
into the first two hidden layers of the STAGCN model, generating initial 
power forecasting outcomes. Construction specifics regarding STAGCN 
dynamic adjacency matrices and spatiotemporal graphs receive detailed 
elaboration in subsequent sections. The concluding error correction 
module implements a dual-decomposition strategy combining ICE
EMDAN and VMD methodologies on forecasting residuals. Sample en
tropy reorganizes the derived components into trend, oscillatory, and 
stochastic elements. Employing LSTM and MKDE techniques respec
tively forecasts these constituent elements. Superposition of these fore
casted components onto the STAGCN initial outcomes produces refined 
high-accuracy power forecasting.

2.1. Multi-source feature extraction module

2.1.1. The effectiveness of multi-source NWP
PV power plants require power data based on meteorological fea

tures from NWP for formulating power generation plans across different 
time scales. A strong physical linkage exists between variations in 
meteorological elements and the power output from solar PV panels. 
System operators depend on power forecasts for participation in 
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electricity markets, developing bidding strategies, and power system 
dispatch, highlighting the significance of NWP [18]. Nevertheless, some 
research omits NWP in short-term forecasting. Reference [34] analyzed 
and forecasted power for a specific station by employing forecast in
formation from neighboring stations. While this approach achieved 
favorable forecasting performance, it does not explain the physical 
causes behind the forecast results. Given the lack of direct causal re
lationships in mapping input power sequences to output power se
quences, disregarding NWP in short-term PV power forecasting appears 
less reasonable [51].

The inherent difficulty in forecasting with a single NWP source often 
leads to substantial forecast errors under complex and changing weather 
conditions [52]. Integrating satellite cloud images with multi-source 
meteorological data, [53] effectively captured two-dimensional and 
three-dimensional spatial and temporal features within the data, 
improving the PV power forecasting capability of their model. Reference 
[54] demonstrated that forecasting methods incorporating ensemble 
forecasting systems exhibit significant advantages in enhancing the 
economic value of PV production. Reference [55] proves that the 
ensemble NWP obtained by running the same NWP model multiple 
times is effective for the probabilistic forecasting of PV power. There
fore, extracting meteorological feature information from multi-source 
NWP is a powerful means to increase the reliability of the model.

2.1.2. Spatio-temporal importance model explanation method
STIME, the novel approach proposed in this study, is purposefully 

designed to quantitatively evaluate the spatiotemporal importance of 
various features within input samples during the model forecasting 
process. The mechanism of this method involves strategically perturbing 
the distribution of two-dimensional input samples along both the lateral 
(feature space dimension) and longitudinal (temporal dimension) axes. 
This is achieved by generating a set of input samples with varying per
mutations and combinations of feature orders, thereby enabling the 
observation and analysis of corresponding changes in model perfor
mance. Following the perturbation applied to samples of a specific 
feature, the forecasting accuracy of the model output exhibits distinct 
fluctuation patterns. Based on these fluctuation patterns, the spatio
temporal contribution score of that feature to the model overall fore
casting capability can be quantified and computed. STIME extracts and 
integrates meteorological feature information from multiple NWP 
sources pertaining to both the target forecasting station and neighboring 
stations. The application of the STIME method not only facilitates an in- 
depth analysis of the model internal decision logic, identifying meteo
rological factors critically influencing forecasting accuracy and thereby 
enhancing model interpretability, but also leverages its quantitative 
results to effectively fuse the complementary information inherent in 

multi-source NWP data. This synergistic fusion ultimately leads to 
improved forecasting performance for the target station.

Given an n-dimensional meteorological feature space provided by 
multi-source NWP data, where the feature dimensionality n ∈ N+. Let 
the pre-trained PV power forecasting model be represented as the 
mapping function f : Rn→R. For an input sample feature vector x ∈ Rn, 
the model outputs the forecasting PV power value ŷ = f(x). Our feature 
extraction task is to compute the spatiotemporal importance contribu
tion score I(f , j) of a specific feature ϕj, where j ∈ {1,2, ...,n}, within the 
feature set towards the final forecasting value ŷ. To rigorously evaluate 
the model generalization performance, a test set D =

{(
x(i), y(i)

)⃒
⃒i = 1,2,

...m
}

containing m independent samples is constructed, where x(i) de
notes the feature vector of the ith sample and y(i) represents its corre
sponding true power observation. Forecasting deviation is quantified 
using a loss function L(ŷ, y). Prior to initiating the spatiotemporal 
importance analysis, all features undergo min–max normalization to 
eliminate numerical scale bias introduced by differing units. When 
calculating feature importance across the spatiotemporal dimensions, a 
dynamic reference output can be established. For any sample i, its 
reference output is defined as: 

f
(
x(i)) = f

(
x(i)

1 , x(i)
2 , ..., x(i)

j , ..., x(i)
n

)
(1) 

While holding the feature dimension ϕj constant, perturbed samples 

x(i,l)
j (i ∕= l) can be constructed to quantify the model temporal response 

characteristics across the evolutionary sequence. Specifically, by con
trasting the model output differences arising from the permutation of 
features between sample i and sample l while preserving ϕj, the resulting 
state variation along the longitudinal dimension can be computed. When 
feature ϕj undergoes migration across different samples, the resultant 
change in the model forecasting output can be characterized by: 

f
(

x(i,l)
j

)
= f
(

x(i)
1 , x(i)

j , ..., x(l)
k , ..., x(i)

n

)
(2) 

where the value of feature ϕj in sample i is replaced by the corresponding 
value from sample l, as illustrated in Fig. 2(a). Furthermore, feature 
interaction effects within the spatial dimension can be quantified 
through lateral permutation. This involves replacing the value of feature 
ϕj in sample x(i) with the observed value of a different feature ϕk(k ∕= j)
within the same sample i, as depicted in Fig. 2(b). The resultant model 
output for this laterally perturbed sample is defined by equation (3): 

f
(
x(j,k)

)
= f
(

x(i)
1 , x(i)

k , ..., x(i)
j , ..., x(i)

n

)
(3) 

Considering the calculation method of the reference output is 

Fig. 2. The schematic diagram of STIME method.
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defined above, the space–time loss variation is measured by two loss 
functions: 

ΔL(i,l)
j = L

[
y(i), f

(
x(i,l)

j

)]
− L
[
y(i), f

(
x(i)

j

)]
(4) 

ΔL(i)
(j,k) = L

[
y(i), f

(
x(i)
(j,k)

)]
− L
[
y(i), f

(
x(i)

j

)]
(5) 

Let Si = {1,2, ...,m}\{i} denote the index subset excluding sample i. 
By iterating over all permutations of feature ϕj using samples within Si, 
and computing the loss variation m − 1 times, an expected estimate of 
the sensitivity change along the temporal dimension is obtained. Simi
larly, defining the feature exclusion set Γj = {1, .., k, ..., n}\{j} to repre
sent the complementary feature space of ϕj, allows for the computation 
of the expected estimate of the sensitivity change along the spatial 
dimension. The integrated calculation of spatiotemporal sensitivity 
change is formulated as: 

ΔL(i)
j =

1
|Si|

∑

l∈Si

ΔL(i,l)
j (6) 

ΔL(i)
(j,k) =

1
|Γj|

∑

k∈Γj

ΔL(i)
(j,k) (7) 

The average loss variation has now been computed, based on the 
reference output, for sample i with respect to feature ϕj and for all fea
tures within sample i. Extending this computational framework to the 
entire sample space yields the spatiotemporal importance score I(f , j) for 
feature ϕj: 

I(f , j) =
1
m
∑m

i=1

(
ΔL(i)

j + ΔL(i)
(j,k)

)
(8) 

2.2. PV power forecasting module

2.2.1. PV power forecasting problem description
Forecasting models require capturing the multidimensional coupling 

mechanisms between meteorological elements and power generation. 
Dynamic processes of cloud movement induce coordinated changes in 
complex meteorological parameters among neighboring stations, form
ing nonlinear correlation networks spanning multiple spatial and tem
poral scales.Building upon this physical foundation, a dynamic spatio- 
temporal graph attention model is constructed where a time-varying 
edge set characterizes interrelationships among multi-source meteoro
logical features and dynamic adjacency matrices enhance feature vari
able interpretability through dynamic encoding of spatio-temporal 
attention coefficients between nodes. This architecture establishes 
spatio-temporal topological mapping relationships by integrating multi- 
source NWP historical meteorological data with the power station time- 
series output. Multi-source NWP meteorological variables and the his
torical power sequence are jointly represented as graph signals defined 
on this dynamic graph structure.

The dynamic graph sequence {G t |t = 1, 2, ...,T} comprises a series of 
time-varying weighted undirected graphs with adjacent graph instances 
G

t and G t+1 separated by a fixed time interval τ along the temporal 
dimension. Each graph structure G t = (V ,E

t
,At) contains three com

ponents including a fixed node set V = {vi}
N
i=1 corresponding to multi- 

source feature vectors, a time-varying edge set E t representing dynamic 
spatial dependency connections between nodes where an element et

ij =
(
vi, vj

)
denotes a connection existing at time t, and a dynamic adjacency 

matrix At ∈ RN×N fully characterizing the graph time-varying topology. 
The elements At

ij quantify the association strength between nodes vi and 
vj at time t with a value of zero assigned if no connection exists. This 
formulation defines the graph structure as a mapping xt : V →R. The 
forecasting task is formally expressed as utilizing the historical feature 

node state tensor for the past M time steps Xτ− M:τ− 1 = [xτ− M, xτ− M+1, ...,

xτ− 1] where xτ ∈ RN represents the full node feature vector at time τ to 
infer the future H-step power output sequence. The forecasting process is 
expressed through equations (9) and (10). 

[Xτ− M:τ− 1,Gt ]→
f

P̂τ:τ+H− 1 (9) 

Xτ− M:τ− 1 = Xτ− M,Xτ− M+1, ...,Xτ− 1 (10) 

2.2.2. Attention-based spatiotemporal feature transformation and fusion 
technique

Spatial attributes exist among meteorological feature nodes. 
Weighted graph edge connections are often represented using the 
Pearson correlation coefficient or distance-based gaussian radial basis 
functions and inverse functions [56]. Such descriptions may not fully 
capture the underlying correlation characteristics between meteoro
logical features. This paper introduces an attention-based spatiotem
poral feature transformation and fusion technique to construct a 
dynamic adjacency matrix, thereby characterizing the complex in
terrelationships among meteorological features.

The STAGCN model employs a spatiotemporal co-attention archi
tecture that integrates temporal and spatial transformation fusion 
structures through a frame segmentation mechanism. Within this 
framework, the temporal attention feature transformation and fusion 
technique first transforms multi-source features along non-stationary 
time dimensions to capture nonlinear dependencies, then combines 
them with a dynamic spatial attention technique to identify spatial 
correlations within time-varying implicit features. Node signal repre

sentations are defined as xi =
[
x1

i , x2
i , ..., x

f
i

]
∈ Rf for i ∈ {1, 2, ..., N}, 

where f denotes the node feature dimensionality. A multi-dimensional 
attention technique quantifies the feature relevance and topological 
influence of node j on target node i by retaining implicit information 
from preceding and subsequent sequences [35]. The feature space 
embedding process utilizes a learnable linear transformation kernel W ∈

Rfʹ×f to project original features into an fʹ-dimensional latent space, 
facilitating feature fusion, followed by the derivation of normalized 
attention coefficients αij. 

eij = LeakyReLU
(
a⋅
[
Wxi

⃦
⃦Wxj

])
, j ∈ N i (11) 

αij = softmaxj
(
eij
)
=

exp
(
eij
)

∑
k∈N i

exp(eik)
(12) 

The original association strength eij characterizes the unnormalized 
degree of node interaction. Here, the modified LeakyReLU(⋅) unit serves 
as the nonlinear transformation function, with its advantage lying in 
mitigating the vanishing gradient problem. The parametric vector a ∈

R2fʹ×1 acts as a trainable adaptive weight regulator. Feature interaction 
detection is achieved via the vector dot product operation ⋅. The node 
feature fusion employs the tensor concatenation operator ‖, mapping 
high-dimensional features into a unified representation space. The 
initial association degree eij obtained through the above operations re
quires probabilistic normalization. This transformation ensures the 
attention weights within the neighborhood satisfy the probability dis
tribution law 

∑
jαij = 1. Finally, the semantically enhanced represen

tation hi for node vi is generated through attention-guided neighborhood 
aggregation as expressed in Equation (13), where N i represents the 
neighborhood of node i and σ(⋅) denotes the activation function. 

hi = σ
(
∑

j∈N i

αijWxj

)

(13) 

The temporal attention feature transformation and fusion technique 
demonstrates advantages in fully leveraging nonlinear dependencies 
and evolving characteristics embedded across different time frames of 
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sequential data. Its input corresponds to the feature vector xt
i ∈ Rfin×1 of 

node i at time frame t. Considering the notable time-varying nature of 
influence weights from different time frames on the current state, this 
technique dynamically adjusts its computational strategy. Specifically, it 
introduces a learnable temporal weight matrix Wt

temp ∈ Rfʹ×fin for each 
time frame t to comprehensively extract cross-timestep feature correla
tions, achieving feature transformation of multi-source features along 
the longitudinal dimension. By applying an adaptively varying temporal 
feature fusion vector at

temp ∈ R2fʹ×1 to all nodes and time frames, com
bined with the tensor concatenation operator ‖ for feature fusion, this 
technique processes temporal characteristics. For target node i and 
reference time frame t, the computation of temporal attention 

transformation fusion coefficient αkt
i integrates the nonlinear trans

formation of the LeakyReLU(⋅) activation function with the normaliza
tion of the Softmax(⋅) function, enhancing the retention of temporal 
transformation and fusion information during model training. 

αkt
i = softmax

(
LeakyReLU

(
at

temp⋅
[
Wt

tempx
k
i

⃦
⃦
⃦Wt

tempx
t
i

]))
(14) 

The coefficient αkt
i quantifies the temporal influence of multi-source 

features from historical time frame k on feature node i within the context 
of time frame t. Based on the computed normalized temporal attention 
transformation fusion coefficient αkt

i , weighted aggregation of multi- 
source features across all time frames k generates the time-aware 

Fig. 3. STAGCN forecasting model construction process.
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embedded feature vector ht
i ∈ Rfʹ×1 for node i at current frame t. Sub

sequently, stacking embedded vectors of all nodes N across all time 
frames T forms the temporal attention transformation fusion coefficient 
matrix ht ∈ RN×fʹ and the complete temporal attention transformation 
fusion feature tensor h ∈ RN×T×fʹ. And the time transform weight matrix 
is Qt

temp ∈ Rfʹ×fin . 

ht
i = σ

(
∑T

k=1
αkt

i Qt
tempx

k
i

)

(15) 

To capture complex spatial correlations among different nodes 
within the same time frame t, we introduce an attention-based spatial 
feature transformation and fusion technique. This technique utilizes the 
temporal embedded feature tensor h, obtained from the preceding 
temporal transformation fusion step, as its foundational input. The 
spatial transformation fusion technique constructs a dynamically 
updated spatial relation graph. For each time frame t, it computes the 
spatial association strength At

ij between any node pair (i, j) according to 
equation (16). 

At
ij = softmax

(
l
(

ai
spat⋅
[
Wt

spath
t
i

⃦
⃦
⃦Wt

spath
t
j

]
)) (16) 

where At
ij characterizes the importance of multi-source feature infor

mation from node j to node i at specific time frame t. The spatial feature 
fusion vector at

temp ∈ R2fʹ×1, employed to compute association strength, 
remains consistent across different time frames, ensuring model 
parameter efficiency. Association strengths of all multi-source node 
pairs at time frame t constitute the spatial feature fusion coefficient 
matrix At ∈ RN×N for that moment, collectively forming the spatial 
feature fusion tensor A for the entire sequence. Further processing is 
typically required before computing spatial associations, where node 
features undergo spatial domain feature mapping. For this purpose, the 
technique equips each time frame t with a dedicated spatial trans
formation weight matrix Wt

temp ∈ Rfʹ×fin . This matrix projects high- 
dimensional features from the temporal fusion output (dimension fʹ) 
into a lower-dimensional latent feature space fʹ́ , refining more 
discriminative spatial interaction features while reducing model 
complexity.

2.2.3. Dynamic STAGCN model
This study proposes a dynamic STAGCN model incorporating multi- 

source NWP meteorological features. By leveraging time-varying infor
mation between multi-source NWP meteorological characteristics and 
PV power, the model adaptively captures spatiotemporal correlations. It 
integrates a spatiotemporal attention transformation and fusion tech
nique with convolutional layers to perform PV power forecasting for 
single power stations, with the forecasting workflow illustrated in Fig. 3.

To effectively process the N-node feature matrix composed of multi- 
source NWP and PV power data, we employ an attention-based spatio
temporal feature transformation and fusion technique to partition the 
multivariate feature matrix into overlapping time frames. Specifically, 
continuous input sequences are segmented into T spatiotemporal anal
ysis frames with a 50 % overlap ratio. This half-frame overlap strategy 
draws inspiration from reference [57], which utilizes overlap-add 
techniques to reconstruct original signals from windowed frames, aim
ing to preserve temporal continuity while reducing modeling 
complexity. These segments are designed to overlap rather than remain 
independent, with each analysis unit sharing half its data with adjacent 
units. When the input sequence contains M historical observation points, 
setting the total frame count T yields a single-frame scale of 2m, satis
fying m(T + 1) = M ∈ N. This partitioning mechanism effectively mit
igates two pitfalls of long-term temporal modeling: direct capture of full- 
node feature correlations over M steps causes computational redun
dancy, while fine-grained temporal segmentation may induce 

forecasting oscillations.
Following this overlap design, the original multi-source feature 

matrix is defined as X = [xλ, xλ+1, ..., xλ+2m] ∈ RN×T×fin , where feature 
dimension fin equals frame length 2m. The set of traversal for the frame 
start index λ is {τ − M + k⋅m|k = 0,1,...,T}, covering the historical period 
from τ − M to τ − 1. This initial structure (Input Signal 1) undergoes 
reshaping to vertically integrate identical feature sequences across all 
frames, generating a reorganized multi-source feature tensor (Input 
Signal 2). For deep temporal feature extraction, the attention-based 
temporal feature transformation and fusion technique first processes 
the reshaped tensor. This technique captures dynamic correlations 
among embedded features across time points, outputting matrices con
taining N temporal transformation fusion coefficients that quantify in
fluence weights of each feature node within specific time frames. 
Subsequently, these coefficient matrices form a higher-dimensional 
temporal fusion tensor, enabling dynamic weight allocation for tempo
ral analysis. Following temporal processing, spatial transformation 
fusion operates on the temporally embedded features. Spatial fusion 
vectors dynamically generate spatial transformation fusion tensor A. 
Critically, these vectors are computed independently per time frame, 
rendering tensor A a time-evolving dynamic adjacency matrix that 
precisely characterizes shifting spatial relationships among multi-source 
feature nodes across time. Finally, integrating this dynamic adjacency 
matrix A with spatiotemporally transformed features constructs graph- 
structured data encapsulating dynamic spatiotemporal dependencies. 
This graph structure feeds into graph convolutional layers that perform 
feature propagation and aggregation on the spatiotemporal dynamic 
graph, comprehensively integrating cross-dimensional dependencies to 
generate preliminary PV power forecasting. The propagation pattern 
between graph convolutional layers follows [51]: 

Xl+1 = σ

⎛

⎝D̂
−

1
2 Â D̂

−
1
2X(l)W(l)

⎞

⎠ (17) 

where the node feature matrix is X , the self-loop augmented adjacency 
matrix is Â = A + An, An is the identity matrix, and symmetric 
normalization is applied based on the degree matrix D̂. The trainable 
parameter set is denoted as the weight matrix W, and the feature 
transformation process is implemented by the nonlinear activation 
function σ(⋅).

2.3. Forecasting error correction module

PV power forecasting deviation constitutes a critical bottleneck 
constraining further improvements in forecasting accuracy. As discussed 
in the literature review, existing research commonly overlooks the error 
correction stage in the forecasting backend or inadequately analyzes the 
internal composition mechanisms of errors. Traditional single correction 
methods face difficulties in fully characterizing and eliminating such 
composite errors. Therefore, constructing an error correction module 
based on ICEEMDAN-VMD secondary decomposition is essential for 
enhancing final forecasting accuracy. This module conducts an in-depth 
analysis of the intrinsic composition and physical meaning of the orig
inal forecasting error sequence Perr, separating error subcomponents 
dominated by different physical mechanisms including endogenous 
noise, exogenous meteorological disturbances, and latent system biases. 
It then performs targeted reconstruction of each subcomponent, ulti
mately yielding a more accurate post- forecasting result through 
correction. The error sequence is formally defined as the actual power 
minus the forecasting power, as expressed in equation (18). 

Perr = Pact − Pfor (18) 

The module first employs ICEEMDAN to perform primary decom
position on the original error sequence Perr. This step effectively miti
gates mode mixing issues and reduces residual noise, preliminarily 
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separating error oscillation patterns at different time scales along with 
the residual. To address the complex mixed information, particularly 
within high-frequency modes, that may persist after primary decom
position, VMD is subsequently applied for secondary fine decomposi
tion. Leveraging its strong adaptability and precise frequency band 
segmentation capability, VMD decouples potential subsequences within 
high-frequency error components driven by distinct physical sources. 
Finally, for the subsequences obtained through decomposition, the 
sample entropy method is utilized for reconstruction. The reconstructed 
components are then forecasted using LSTM networks and MKDE, 
achieving effective error compensation. This secondary decomposition 
framework offers a novel approach for deepening the understanding of 
PV forecasting error composition and enabling precise correction.

2.3.1. Primary decomposition of ICEEMDAN
Existing error correction methods based on EMD and its variants 

Ensemble EMD (EEMD) and CEEMDAN often encounter issues of mode 
mixing and residual noise interference when processing non-stationary, 
nonlinear signals like PV forecasting errors, hindering the effective 
extraction of intrinsic error modes [50]. To address these limitations, 
ICEEMDAN is selected as the primary error decomposition tool. ICE
EMDAN significantly suppresses mode mixing by adaptively injecting 
uniquely modulated white noise at specific stages of the decomposition 
process and computing the ensemble average of local means. This 
approach concurrently reduces the residual noise level within the ulti
mately extracted intrinsic mode functions (IMFs), thereby offering su
perior decomposition robustness and feature extraction capability, 
making it particularly suitable for dissecting the complex structure of PV 
forecasting errors.

Add special noise Ek
(
w(i)) to Perr, calculate the kth residual and modal 

component Perr
k by (19) and (20). 

rk =
1
I
∑I

i=1
M
(
rk− 1 + βkEk

(
w(i))) (19) 

Perr
k = rk− 1 − rk (20) 

where M(⋅) is the operator that generates the local mean of the signal, 
and I is the number of white noise groups. w(i) denotes the ith group of 
white noise used for auxiliary decomposition. βk is the iterative expected 
signal-to-noise ratio for the kth decomposition and rk is the residual of 
the kth decomposition.

2.3.2. Secondary decomposition of VMD
While ICEEMDAN primary decomposition effectively mitigates mode 

mixing, the high-frequency IMF components it yields typically remain 
complex non-stationary signals potentially containing mixed error 
fluctuations originating from multiple physical sources. Directly cor
recting such mixed components may yield limited effectiveness. To more 
precisely distinguish these complex high-frequency error constituents, 
VMD is introduced to perform secondary decomposition on the selected 
high-frequency IMFs [58]. 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
{uk},{wk}

{
∑K

k=1

⃦
⃦
⃦
⃦∂t

[(

δ(t) +
j

πt

)

∗ uk(t)
]

e− jwkt
⃦
⃦
⃦
⃦

2

2

}

s.t.
∑K

k=1

uk = Perr
1

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(21) 

where K is the number of decomposed modes; ∗ is the convolution 
operator, ‖⋅‖2 is the two norm, ∂t is the partial derivative, and δ(t) is the 
Dirac function.

2.3.3. Error correction strategy
The error is decomposed into a series of components Perr

k by 
ICEEMDAN-VMD twice decomposition method, and then combined with 

sample entropy. The error component is reconstructed into trend 
component Perr

T , oscillation component Perr
O and random component Perr

R . 
The sample entropy formula is shown in (22). 

Sampen(m, r,N) = − ln
(

Bm+1(r)
Bm(r)

)

(22) 

where Sampen(⋅) is calculates sample entropy; N is the length of the 
modal component; Bm(r) and Bm+1(r) are the probabilities that the 
sequence matches m points and m+1 points under tolerance r, respec
tively. For Perr

T and Perr
O , LSTM is used for error forecasting. LSTM is a 

mainstream deep learning method [59], and its cell structure is shown in 
the Fig. 4.

The MKDE method is used to forecast the error for Perr
R . The expres

sion is shown in the following equation. 

fm0 (x) =
1

Nhm0

∑N

i=1
K
(

x − xi

hm0

)

(23) 

fMKDE(x) =
∑M

m0=1
wm0 fm0 (x) (24) 

K(x) =
1̅̅
̅̅̅̅

2π
√ e−

x2

2 (25) 

In the formula, hm0 is the width of the window m0; N is the total 
number of samples; K(⋅) is the kernel function; x is a random variable, 
fm0 (x) is the kernel density expression, wm0 is the weight coefficient of 
fm0 (x), fMKDE(x) is the expression of mixed kernel density, and M is the 
total number of bandwidths.

Fig. 4. The structure of LSTM cell.

Fig. 5. Geographical location of multi-source NWP.
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3. Case study

3.1. Data description & implementation details

The dataset originates from three geographically distinct data sour
ces in the Ulanqab region of northern China, containing measured power 
data, NWP data for one target PV power station, and NWP data from two 
neighboring stations. The three groups of NWP sources contain 17 
meteorological characteristics. The NWP of the target station is defined 
as source A, and other adjacent stations are defined as source B and 
source C. Fig. 5 shows the geographical locations of the three NWP 
sources.

If the seven meteorological features of total irradiance ground (TIG), 
temperature (TEM), humidity (HUM), cloud amount (CA), wind direc
tion (WD), pressure (PRE), wind speed (WS) of the source A are 
expressed as A_TIG, A_TEM, A_HUM, A_CA, A_WS, A_WD, and A_PRE. 
Then the five meteorological features of source B and source C can be 
expressed as B_TIG, B_TEM, B_HUM, B_CA, B_WS, C_TIG, C_TEM, 
C_HUM, C_CA, C_WS, respectively. Table 1 describes the basic infor
mation of the three NWP sources. The time span of the data set used is 
from September 1, 2022 to October 1, 2024. After removing outliers and 
null values, the time step of the data set is 68448.

The method operates within the following hardware and software 
environment: the computer is equipped with NVIDIA GeForce GTX 1650 
GPU, and the host memory is 8 GB. PyTorch 1.13.1 deep learning 
framework is used in python3.8 software to support CUDA 11.6 accel
eration. This configuration can meet the computational requirements of 
deep learning tasks required for experiments.

3.2. Accuracy metrics

In this study, we employ the root mean square error (RMSE), mean 
absolute error (MAE), and coefficient of determination R2 as metrics to 
assess the forecasting accuracy of the proposed method. The formulas 
for calculating each metric are as follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
T
∑T

t=1
(pt − p̂t)

2

√
√
√
√ (26) 

MAE =
1
T
∑T

t=1
|pt − p̂t | (27) 

R2 = 1 −

∑T
t=1(pt − p̂t)

2

∑T
t=1(pt − pt)

2 (28) 

where pt and p̂t represent the real power value and the forecasting 
power value at time t, respectively. T represents the forecasting time 
scale, and pt is the average power value.

3.3. Simulation design

In the simulation design phase, the entire dataset was stratified by 
weather type employing accumulated historical PV measurements, 
yielding sunny, cloudy, and rainy categories accounting for 61 %, 21 %, 

and 18 % of the total dataset respectively. This study established six 
benchmark models for initial verification of the method leading capa
bility. Subsequent comparative experiments confirmed the feature 
extraction superiority of the STIME approach. For the power forecasting 
component, multi-source NWP data derived from feature extraction 
alongside historical PV power data formed dynamic graph structures 
incorporating diverse graphical information. Joint interpretable anal
ysis of input features was conducted via an attention mechanism for 
spatiotemporal feature transformation and fusion technique combined 
with importance scores generated by the STIME method, clarifying the 
critical role of dynamic spatiotemporal graphs. Regarding error 
correction, error sequences from different weather types underwent 
primary ICEEMDAN decomposition followed by secondary VMD 
decomposition. Sample entropy reconstructed the decomposed se
quences into trend, oscillatory, and stochastic elements. LSTM network 
forecasted the trend and oscillatory elements, while MKDE forecasted 
the stochastic element. The preliminary power forecast was aggregated 
with forecasting of the three error components to yield the PV power 
forecast.

3.4. The results and discussion of simulation experiment

3.4.1. Comparisons with other setting models
To thoroughly investigate the forecasting capability of the method, 

ablation experiments examined three dimensions: selection of neural 
network architectures, integration of dynamic graph structures, and 
implementation of the ICEEMDAN-VMD secondary decomposition error 
correction strategy. Six supplementary benchmark methods pertaining 
to graph neural networks were introduced for comparative assessment. 
Fundamental configurations of these approaches appear in Table 2. 
Outcomes across distinct weather conditions are visualized in Fig. 6.

Table 3 presents the RMSE, MAE, and R2 metrics for the proposed 
method and baseline methods under various weather conditions. When 
the weather type is sunny, comparing the three metrics between the 
proposed method and Bench-1 and Bench-2 reveals that different error 
correction strategies yield similar effects. A comparison between the 
proposed method and Bench-3 indicates that the twice decomposition 
error correction strategy enhances the RMSE, MAE, and R2 of the 
STAGCN model by 2.71 %, 2.70 %, and 4.53 %, respectively. The STGCN 
model in benchmark 4 does not consider the attention mechanism. The 
GAT and GCN models of benchmark 5 and benchmark 6 adopt the 
network of static graph structure. Their performance is close, but they 
are not as good as the proposed method.

When the weather type is classified as cloudy, a similar approach to 
the analysis of power forecasting results for clear skies is employed. 
Comparing the proposed method with Bench-3, it is observed that 
incorporating an error decomposition correction strategy leads to a 

Table 1 
Features and geographic information of multi-source NWP.

Multi- 
source NWP

Multi-source features PV 
plants

Longitude Latitude

source A A_TIG, A_TEM, A_HUM, 
A_CA, A_WS, A_WD, A_PRE

#1 111◦23′40″ 41◦58′45″

source B B_TIG, B_TEM, B_HUM, 
B_CA, B_WS

#2 111◦15′38′ 41◦51′48″

source C C_TIG, C_TEM, C_HUM, 
C_CA, C_WS

#3 111◦5′20″ 41◦53′17″

Table 2 
Experimental configuration based on forecasting model and error correction 
mode.

Methods Neural 
network

Dynamic 
graph

Error correction strategy

ICEEMDAN VMD ICEEMDAN- 
VMD

Proposed STAGCN Yes No No Yes
Benchmark- 

1
STAGCN Yes No Yes No

Benchmark- 
2

STAGCN Yes Yes No No

Benchmark- 
3

STAGCN Yes No No No

Benchmark- 
4

STGCN Yes No No Yes

Benchmark- 
5

GAT No No No Yes

Benchmark- 
6

GCN No No No Yes
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reduction of 1.91 % in RMSE, 0.57 % in MAE, and an enhancement of 
4.36 % in R2; when contrasted with Bench-1 and Bench-2, it is found that 
the twice error decomposition correction strategy can maximally 
decrease RMSE by 1.08 % and MAE by 1.12 %. Moreover, the R2 indi
cator of the proposed method stands at 0.9182, surpassing that of other 
methods.

During rainy conditions, meteorological features such as irradiance, 
temperature, and humidity exhibit significant fluctuations, leading to 
increased errors. Nevertheless, the present approach maintains lower 
RMSE and MAE values than all alternative methods. Its R2 value of 
0.8326 surpasses other benchmarks, suggesting strong agreement be
tween forecast results and measured power values even under rainy 
circumstances.

To facilitate a comprehensive comparison and analysis of the metric 
results, Fig. 7 presents a comparative analysis. Overall, the RMSE and 
MAE of all methods are minimized under clear weather conditions, 
larger on the overall dataset and cloudy dataset, and maximized under 
rainy weather conditions, while the R2 is generally lower in rainy con
ditions. To pursue lower errors, one could select methods corresponding 

to the flatter heptagonal areas in the radar chart for forecasting. For 
instance, during rainy weather, one could opt for the proposed method, 
Bench-1, Bench-2, and Bench-6. Collectively, the results from all three 
metrics demonstrate robust performance of the methodology in PV 
power forecasting.

The preceding analysis indicates that incorporating error correction 
enhances PV power forecasting accuracy across all weather types, with 
measurable improvements observed. Under adverse meteorological 
conditions, the methodology achieves superior forecasting precision, 
yielding substantially enhanced forecasting outcomes.

3.4.2. Feature extraction based on STIME method
In the case of limited computing resources, if all the multi-source 

NWP data close to the two-year time scale are fed into the model, it 
will inevitably lead to the increase of the complexity of the forecasting 
model, the learning of too many redundant features, the difficulty of 
convergence, and the decrease of forecasting accuracy. Based on this, 
ensuring that the input data of the model is useful information for 
forecasting and that the model can be interpreted according to the input 

Fig. 6. Power forecasting results for different weather types.

Table 3 
Model performance under different weather types.

Sky Type Metric Forecasting methods

Proposed Bench-1 Bench-2 Bench-3 Bench-4 Bench-5 Bench-6

Sunny RMSE 3.70 % 4.55 % 3.42 % 6.41 % 7.96 % 6.38 % 5.64 %
MAE 2.16 % 2.76 % 1.84 % 4.86 % 4.43 % 3.36 % 3.08 %
R2 0.9919 0.9876 0.9934 0.9466 0.9665 0.9775 0.9723

Cloudy RMSE 9.64 % 10.50 % 10.72 % 12.55 % 11.35 % 11.89 % 11.91 %
MAE 5.11 % 5.88 % 6.32 % 6.68 % 6.44 % 7.00 % 6.40 %
R2 0.9182 0.8962 0.8823 0.8446 0.8699 0.8492 0.8655

Rainy RMSE 12.36 % 12.70 % 16.63 % 19.30 % 15.88 % 17.02 % 15.22 %
MAE 6.28 % 5.99 % 7.54 % 9.56 % 7.79 % 8.45 % 6.97 %
R2 0.8326 0.8201 0.7067 0.2701 0.5090 0.3616 0.6157

Overall RMSE 8.15 % 9.36 % 9.54 % 11.80 % 10.41 % 9.87 % 9.66 %
MAE 4.12 % 5.09 % 5.74 % 6.96 % 6.34 % 5.77 % 5.31 %
R2 0.9462 0.9271 0.9145 0.8563 0.8902 0.9032 0.9133

Fig. 7. Indicator radar charts of all benchmark methods under different conditions.
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features is one of the problems that have been studied in the forecasting 
field. The traditional correlation analysis can only ensure that the 
selected features are highly correlated with the forecasting target 
sequence. Whether it can really affect the forecasting effect of the model 
needs further discussion.

The Kendall correlation coefficient assesses linear and nonlinear 
relationships within complex datasets while remaining independent of 
data distribution patterns [60]. This section employs the Kendall cor
relation coefficient to identify features exhibiting the strongest statisti
cal associations with PV power generation among 17 meteorological 
characteristics, followed by application of the STIME technique to 
evaluate these features’ contribution levels to the forecasting model.

As shown in Fig. 8, there are 13 meteorological features closely 
related to PV power, which are A_TIG, A_TEM, A_HUM, A_WS, A_PRE, 
B_TIG, B_TEM, B_HUM, B_WS, C_TIG, C_TEM, C_HUM, C_WS. There are 
more 0 values in the cloudiness feature samples, so the correlation co
efficient of cloudiness in the three NWP sources is very low. The target 

PV power station is situated in a region abundant with Gobi deserts and 
grasslands, characterized by a mid-latitude, arid climate with scarce 
cloud formation. Additionally, the wind direction exhibits seasonal 
patterns and changes gradually, resulting in minimal correlation with 
the fluctuating PV power output. These feature importance scores have 
been normalized before using the STIME method. As can be seen in 
Fig. 9, in addition to the six features of C_HUM, B_WS, C_WS, A_WS, 
B_HUM and A_PRE, the importance of other features is higher than 5 %, 
which is marked with a darker blue in the figure.

Consequently, the selected meteorological characteristics include 
A_TIG, C_TIG, B_TIG, A_TEM, C_TEM, B_TEM, and A_HUM. These fea
tures demonstrate both strong correlations with PV power generation 
and enhanced model performance, thereby improving model interpret
ability. It merits attention that features not selected do not necessarily 
indicate irrelevance to PV output; rather, excluding features with minor 
contributions reduces model complexity and facilitates clearer inter
pretation of forecasting mechanisms.

To evaluate the effectiveness of this feature extraction technique, 
alternative approaches were examined: Pearson correlation coefficient, 

Fig. 8. Gradient map illustrating the Kendall correlation coefficient between meteorological characteristics and PV power.

Fig. 9. The feature importance score calculated by the STIME method.

Table 4 
Comparison of the effects of various feature extraction strategies on the model.

Extraction 
method

Neural 
network

Multi-source 
feature results

RMSE MAE R2

STIME STAGCN A_TIG, A_TEM, 
A_HUM, B_TIG, 
B_TEM, C_TIG, 
C_TEM

11.80 % 6.96 % 0.8563

Pearson STAGCN A_TIG, A_TEM, 
B_TEM, B_TIG, 
C_TIG

12.34 % 7.05 % 0.8465

Kendall STAGCN A_TIG, A_PRE, 
A_TEM, B_TIG, 
B_TEM, C_TIG

16.24 % 8.85 % 0.7242

Spearman STAGCN A_TIG, A_TEM, 
B_TEM, B_TIG, 
B_HUM, C_TIG

12.65 % 7.72 % 0.6466

NMI STAGCN A_TIG, A_WS, 
A_TEM, B_TIG, 
B_TEM, C_TIG, 
C_HUM

14.95 % 7.13 % 0.7839
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Kendall correlation coefficient, Spearman correlation coefficient, and 
normalized mutual information. Through these extraction methods, the 
accuracy indicators are compared using the same model. Table 5 shows 
the feature results extracted by these methods and the accuracy index 
results of forecasting. It can be found from the table that all feature 
extractions contain the feature of irradiance, and atmospheric pressure 
and wind speed will cause large errors in forecasting. The RMSE of the 
method based on Kendall and NMI reached 16.24 % and 14.95 %, 
respectively. The Pearson correlation coefficient does not extract the key 
feature of A_HUM, resulting in an error 0.54 % higher than the STIME 
method. The RMSE, MAE and R2 of feature extraction based on STIME 
have good performance.

3.4.3. Analysis of forecasting results of dynamic STAGCN model
In the domain of power forecasting, the task of short-term PV power 

forecasting is accomplished by inputting three-day multi-source NWP 
data and historical power data to output PV power data for the forth
coming day. Based on the test results outlined in section 3.4.2, seven 
meteorological features extracted from the multi-source NWP are com
bined with historical PV power data to form eight feature nodes, which 
serve as input signals for the STAGCN model. The training dataset, with 
a time step length M of approximately 47913, can be divided into T =
248 sliding overlapping frames, with each time frame having an overlap 
of m = 192 time steps. The input signals, with dimensions of 8 × 248 ×
384, are fed into the STAGCN model for training and forecasting, and the 
attention-based spatiotemporal feature transformation and fusion tech
nique is employed to calculate the time and space attention coefficient 
matrices. In practice, conducting adjacency analysis on all dynamic 
graphs is challenging. Thus, representative coefficient matrices from 
clear-sky data are selected to demonstrate the model efficacy and un
dergo a joint interpretability test.

As illustrated in Fig. 10, the spatiotemporal transformation and 
fusion coefficients generated across different time frames during 

dynamic adjacency matrix construction are presented. Observations 
indicate that PV power and T_IG receive consistently higher attention 
weights during forecasting, whereas temperature and humidity exhibit 
relatively lower values. These attention weights dynamically adjust 
within time frames as temporal steps progress, demonstrating the model 
capacity to selectively adapt focus toward more critical features under 
varying spatiotemporal conditions for enhanced forecasting accuracy. 
Although direct ranking of node features by attention coefficients is 
infeasible, all features maintain substantial influence throughout 
different time frames. Analysis of evolving spatiotemporal trans
formation and fusion coefficients provides interpretability for identi
fying primary features affecting model accuracy. This mechanism, 
combined with the feature extraction module, collectively validates the 
methodological significance and interpretability of the proposed fore
casting framework.

To determine whether spatiotemporal dynamic graphs genuinely 
enhance accuracy within graph networks, comparative experiments 
were conducted without error correction. Test accuracy outcomes are 
summarized in Table 4, with forecasting curves displayed in Fig. 11. The 
table reveals that incorporating spatiotemporal dynamic graphs effec
tively improves precision: the STAGCN model achieves RMSE reductions 
of 0.48 %, 1.44 %, and 0.81 % relative to STGCN, GAT, and GCN 
respectively, alongside MAE decreases of 0.28 %, 0.37 %, and 0.15 %, 
and R2 improvements of 2.19 %, 6.49 %, and 1.51 %. Consequently, 
integrating spatiotemporal dynamic graphs in graph neural networks 
enables highlighting beneficial features across varying time frames 
during forecasting, thereby elevating forecasting accuracy.

Weather classification yields forecasting error sequences across 
distinct weather patterns. Fig. 12 displays sunny day forecasting out
comes and error sequences from the STAGCN model. Red zones exhibit 
predominantly positive errors while yellow areas show mainly negative 
deviations. The error distribution demonstrates higher magnitudes at 
daily extremes and lower values during midday periods, revealing 
discernible patterns. Consequently, Section 3.4.4 explores forecasting 
error components to refine forecasting outputs, constituting a valuable 
research endeavor.

3.4.4. Analysis of forecasting results considering error correction
To further investigate the underlying mechanisms of error genera

tion, this study employs the ICEEMDAN-VMD twice decomposition and 
error correction strategy, using clear-sky weather type data as an illus
trative example. Prior to decomposition, invalid information with zero 
errors during nighttime has been removed. Initially, the clear-sky error 
sequence is subjected to ICEEMDAN decomposition. When the decom
position reaches the seventh iteration, IMF becomes sufficiently smooth, 
indicating that further decomposition is unnecessary. This process yields 
seven components: IMF1, IMF2, IMF3, IMF4, IMF5, IMF6, and Resid
ual1, as shown in Fig. 13(a). It can be observed that IMF1, generated by 
ICEEMDAN, is a high-frequency, strongly non-stationary component 
with numerous spikes and strong volatility. Directly forecasting this 
component would result in significant errors. Hence, the high- 
frequency, strongly non-stationary component IMF1 is further decom
posed using VMD.

Table 5 
The influence of spatio-temporal dynamic graph in the model.

Neural network Dynamic graph RMSE MAE R2

STAGCN Yes 11.80 % 6.96 % 0.8563
STGCN No 12.28 % 7.24 % 0.8344
GAT No 13.24 % 7.33 % 0.7914
GCN No 12.61 % 7.11 % 0.8412

Fig. 10. Spatio-temporal transformation and fusion coefficients under different 
time frames.

Fig. 11. Forecasting results of different graph network models.
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Determining the number of sub-modes in VMD decomposition re
quires preset parameters. Excessive sub-modes introduce extraneous 
noise, whereas insufficient quantities cause incomplete decomposition. 
To mitigate subjectivity in selecting decomposition numbers, the mean 
sample entropy value guides the VMD sub-mode determination, with 
outcomes illustrated in Fig. 14(a). At decomposition number K = 5, the 
mean sample entropy fluctuates near 0.35 without substantial in
crements. Consequently, K = 5 was selected, yielding decomposition 
results shown in Fig. 13(b) and producing five components: IMF7, IMF8, 
IMF9, IMF10, and Residual2.

Forecasting each modal component acquired through two-stage 
modal decomposition would significantly increase computational costs 

while overlooking correlations among the sub-components. Grouping 
correlated components for collective processing can shorten computa
tion time and highlight the characteristics shared within each group. 
Therefore, we employ SE to assess the complexity of components 
derived from both decomposition stages. Sub-components from ICE
EMDAN decomposition, excluding IMF1, are sequentially labeled com
ponents 1 to 6. Sub-components resulting from VMD decomposition of 
IMF1 are labeled components 7 to 11; the assessment outcome is visu
alized in Fig. 14(b).

Components 4 to 7 display SE values between 0 and 0.3. These are 
reconstructed into a new component representing the primary trend of 
the original error sequence, designated the trend component. Similarly, 

Fig. 12. STAGCN sunny forecasting results and error results.

Fig. 13. Twice decomposition results of ICEEMDAN-VMD based on sample entropy.

Fig. 14. The selection of mode number K and the results of twice decomposition sample entropy.
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components 3, 8, 9, 10, and 11 exhibit SE values between 0.3 and 0.6 
and are reconstructed as the oscillatory component. Components 1 and 
2, with SE values between 0.6 and 0.9, form the random component; the 
reconstructed waveforms are shown in Fig. 15. The trend component, 
containing less physical information and exhibiting smaller fluctuations, 
demonstrates strong predictability, leading to LSTM forecasting. The 
oscillatory component, holding more physical information and dis
playing a degree of periodicity, also lends itself to LSTM forecasting. 
Conversely, the random component exhibits intense fluctuations and 
lacks distinct patterns, making direct forecasting challenging; MKDE 
sampling forecasting is applied here. The resulting error forecasts 
appear in Fig. 16. After the error is decomposed and reorganized, the 
trend error describes the overall trend of the error over a period of time, 
and reveals the time influence of multiple meteorological features of 
NWP on the power forecasting error. The periodicity of the oscillation 
error illustrates the system error caused by the internal parameter 
setting of the model. The random error fluctuates violently, which 
characterizes the influence caused by the fluctuation and instability of 
power acquisition equipment and complex geographical and meteoro
logical factors. Sampling forecasting is more suitable for dealing with 
such errors.

4. Conclusion

This work employs a short-term PV power forecasting approach 
integrating error decomposition correction with a spatiotemporal 
attention graph convolutional network. The forecasting performance 
undergoes rigorous evaluation across diverse weather conditions. 
Comparative analysis involves six benchmark forecasting methods, 
examining the presence or absence of error correction strategies and 
dynamic spatiotemporal graphs. Results demonstrate the presented 
model achieves superior performance across all evaluation metri
cs—RMSE, MAE, and R—compared to every benchmark model. 

(1) The integration of nonlinear correlation analysis with the STIME 
method enables the selection and extraction of features that not 
only exhibit a high degree of correlation with PV power but also 
genuinely benefit the forecasting model. The approach of 
combining attention-based spatiotemporal feature trans
formation and fusion technique to assess feature consistency en
hances the interpretability of the model.

(2) The incorporation of spatiotemporal attention mechanisms and 
dynamic adjacency matrices in the model constructs dynamic 
graph signal means, which effectively increase forecasting accu
racy. The superior forecasting performance of STAGCN over 
models such as STGCN, GAT, and GCN validates this point. 
Considering the ICEEMDAN-VMD twice decomposition error 
correction strategy significantly reduces forecasting errors.

(3) This study presents a method incorporating secondary decom
position error correction, which clarifies the composition and 
generation mechanisms of errors and contributes significantly to 
enhancing power forecasting accuracy. Under cloudy and rainy 
conditions particularly, the approach captures temporal varia
tions in power output and forecasting errors more effectively.

The methodology offers guidance for selecting features essential to 
model construction across varied forecasting scenarios. For power sta
tions lacking sufficient historical data and facing highly variable 
weather conditions, this approach may prove unsuitable. Future 
research could explore forecasting and error correction strategies 
tailored to limited data samples and extreme weather events.
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